In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.
This paper gives a matrix expression of logic. Under the matrix expression, a general description of the logical operators is proposed. Using the semi-tensor product of matrices, the proofs of logical equivalences, implications, etc., can be simplified a lot. Certain general properties are revealed. Then, based on matrix expression, the logical operators are extended to multi-valued logic, which provides a foundation for fuzzy logical inference. Finally, we propose a new type of logic, called mix-valued logic, and a new design technique, called logic-based fuzzy control. They provide a numerically computable framework for the application of fuzzy logic for the control of fuzzy systems.
The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given linear system. The result is then used to provide a comparable cascading form for switching models. Using the common cascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks. In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization for a class of switched linear systems is solved.