As a kind of microplasma sustained in air,solution electrode glow discharge(SEGD)ignited between the liquid electrode and metal electrode is attractive to the fields of optical emission spectrometry and mass spectrometry due to its unique advantages,such as low power consumption and low carrier gas consumption.Moreover,the complex and efficient reactions in the liquid phase and plasma phase of SEGD make it considerable research potential in the fields of biology and medicine,material synthesis,electrochemistry.Considering the close relationship between the various fields on SEGD,here we are devoted to provide an overview of the development of SEGD in various fields.More importantly,a systematic discussion on the discharge mechanism is conducted based on the research process in various fields for getting deeper insight into the SEGD.
An innovative method for the ultrasensitive detection of mercury by solution anode glow discharge atomic emission spectroscopy(SAGD-AES) coupled with hydride generation(HG) was first investigated.In this method,the mercury vapor generated by the HG was transmitted to the SAGD through the miniature hollow tungsten tube for excitation and detected by a miniaturized spectrograph.A thorough parametric evaluation of the HG and SAGD system was performed,including the type and concentration of ca rrier acid,He flow rate,concentrations of NaBH4,discha rge current and discharge gap.Under optimal operating conditions,the detection limit for Hg^(2+) achieved 0.03 μg/L,with a relative standard deviation of 1.1% at the Hg^(2+) concentration of 5 μg/L.Moreover,the correlation coefficient of the calibration curve was 0.9996 in the range between 0.1 and 10 μg/L.The accuracy and practicability of HG-SAGD-AES were verified by measuring GBW09101 b(human hair),GBW10029(fish),soil and rice samples.The results showed good agreement with the certified values and values from direct mercury analyzer(DMA).
Mingli YuanXiaoxu PengFen GeMingyue ZhaoQing LiZheng Wang
We herein proposed a sample introduction technique based on solution cathode glow discharge(SCGD)of a portable design for inductively coupled plasma-optical emission spectrometry(ICP-OES)and its ap-plication in sensitive determination of mercury.The products from SCGD containing mercury vapor,were transported by an Ar flow to ICP spectrometer for detection.A gas liquid separator(GLS)and a dryer were used to condense and remove most of the accompanying moisture,which greatly improved both the stability and sensitivity of the signal.The detection limit(DL)acquired by this developed method was 0.22μg/L(194.1 nm),which was nearly 82 times lower than that obtained by pneumatic nebuliza-tion(PN).The relative standard deviation(RSD)was 1.4%(n=14)for a 50μg/L standard.Blank solution(HNO_(3),pH 1)can effectively elute mercury residue.Its accuracy and practicality were also demonstrated by the determination of GBW10029(fish)certified reference material,shrimp,crawfish,soil and human hair samples.The results showed good consistency with the certified values and the values obtained us-ing inductively coupled plasma−mass spectrometry.
采用213 nm-纳秒激光剥蚀系统对生物基体样品的剥蚀颗粒进行研究,优化了激光剥蚀条件。在剥蚀能量为25%,束斑直径为200μm,剥蚀速率为20μm/s,频率为20 Hz,载气为700 m L He+700 m L Ar时,信号强度及稳定性最佳。以^(31)P为内标元素,最佳剥蚀条件下,考察了56个元素的相对分馏因子。结果表明,生物基体的剥蚀颗粒相较于NIST 610玻璃标样更大,达到3μm;生物基体中元素分馏效应相较于玻璃基体小,大多数元素的相对分馏因子达到1.0±0.1。探讨了生物基体中元素分馏机理,分析了生物基体相较于玻璃基体剥蚀颗粒大,而相对分馏因子未明显增大的原因。一方面可能是粒径3μm的颗粒进入电感耦合等离子体后能原子化;另一方面,大的剥蚀颗粒的富集效应相对较小。进一步对分馏效应的影响因素进行研究,发现分馏效应与激光剥蚀能量、激光频率和扫描速率相关,并且与元素的氧化物沸点负相关,与氧化物键能和电离能正相关。