We report on a first-principles study of a novel band modulation in zigzag double-walled boron nitride nan- otubes (DBNNTs) by applying radial strain and coupled ex- ternal electric field. We show that the band alignment be- tween the inner and outer walls of the DBNNTs can be tuned from type I to type II with increasing radial strain, accompa- nied with a direct to indirect band gap transition and a sub- stantial gap reduction. The band gap can be further signifi- cantly reduced by applying a transverse electric field. The coupling of electric field with the radial strain makes the field-induced gap reduction being anisotropic and more re- markable than that in undeformed DBNNTs. In particular, the gap variation induced by electric field perpendicular to the radial strain is the most remarkable among all the modu-lations. These tunable properties by electromechanical cou- pling in DBNNTs will greatly enrich their versatile applica- tions in future nanoelectronics.
We find by ab initio simulations that significant overall tensile strain can be induced by pure bending in a wide range of two-dimensional crystals perpendicular to the bending moment, just like an accordion being bent to open. This bending-induced tensile strain increases in a power law with bent curvature and can be over 20% in monolayered black phosphorus and transition metal dichalcogenides at a moderate curvature of but more than an order weaker in graphene and hexagon boron nitride. This accordion effect is found to be a quantum mechanical effect raised by the asymmetric response of chemical bonds and electron density to the bending curvature.