The turtle shell is an amazing structure optimized through the long-term evolution by nature. This paper reports the experimental study on the mechanical property at different levels and locations, and the microstructure of the shell from Trachemys scripta (Red-ear turtle) living in South China.
We report a novel oscillatory behavior of a sessile droplet on a hydrophobic surface. The droplet was placed on an electrode with a hydrophobic surface and close to, but not touching, a second needle-like electrode. The change in the contact angle was observed only when the droplet oscillated. In a traditional electro-wetting experiment, however, the contact angle decreased immediately when an alternating current electric field was applied. In addition, the non-contact mode gave rise to a true sessile condition of the droplet, whose oscillation amplitude was not linearly proportional to the driving voltage but reached a maximum value.
The turtle shell is an amazing structure optimized through the long-term evolution by nature. This paper reports the me- chanical respor/se of the shell (Red-ear turtle) to static and dynamic loads, respectively. It is found that the turtle shell under a compressive load yields the maximum vertical displacement at the rear end, but the vertical displacement at the front end is only half of that at the rear end. The maximum horizontal displacement of the shell also occurs at the rear end. It is believed that such a deformation pattern is helpful for protecting the turtle's internal organs and its head. The principal stress directions in the inside surface of the shell under a compressive load are almost the same as those of the biofiber distribution in the inside surface, which results in the strong bending resistance of the turtle shell.