Toxic metals such as lead and chromium in aqueous solutions have been analyzed simultaneously by laser-induced breakdown spectroscopy(LIBS), in which the ordinary printing paper is used as a liquid absorber which was immerged into Pb(NO3)2and Cr(NO3)3aqueous solution to enrich the heavy metals. This method overcomes the drawbacks of splashing and low sensitivity in ordinary LIBS analysis of water, in which a laser beam is directly focused on a liquid surface. A good signal intensity and reproducibility has been demonstrated. The Pb 405.78 nm and Cr 427.48 nm spectral lines are used as the analytical lines. The variation of line intensity with immersion time was investigated. The calibration curve for quantitative measurement of Pb and Cr in water was established, and the detection limits are 0.033 mg/L and 0.026 mg/L respectively,which is about 2-3 orders of magnitude better than that in the ordinary LIBS analysis of heavy metal in solution.
Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signal- to-noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed.
Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha-Boltzmann plot and Stark broadening are used to determine the temper- ature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration.