Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.
We first give a functional moderate deviation principle for random processes with stationary and independent increments under the Ledoux's condition. Then we apply the result to the functional limits for increments of the processes and obtain some Csorgo-Revesz type functional laws of the iterated logarithm.
Three types of laws of the iterated logarithm (LIL) for locally square integrable martingales with continuous parameter are considered by a discretization approach. By this approach, a lower bound of LIL and a number of FLIL are obtained, and Chung LIL is extended.