The kinetics of thedegradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202 ) systemwas studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiencywere examined. Itwas found that the reaction rate fitswell to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced thedegradation rate of NB inwater. Under a given condition (MW power300 W, H202dosage 10 mg/L, pH 6.85 and temperature (60 ± 5)°C), thedegradation rate of NBwas 0.05214 min 1when4 g/L GACwas added. In general, alkaline pHwas better for NBdegradation; however, the optimum pHwas 8.0 in the tested pH value range of4.0-12.0. At H202dosage of 10 mg/L and GACdosage of4 g/L, the removal of NBwasdecreasedwith increasing initial concentrations of NB, indicating that a low initial concentrationwas beneficial for thedegradation of NB. These results indicated that the MW/GAC/H202 processwas effective for trace NBdegradation inwater. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction anddehydrogenation reaction enhanced NBdegradation.
Dina TanHonghu ZengJie LiuXiaozhang YuYanpeng LiangLanjing Lu