Angiogenesis,a process by which the preexisting blood vasculature gives rise to new capillary vessels,is associated with a variety of physiologic and pathologic conditions.However,the molecular mechanism underlying this important process remains poorly understood.Here we show that histone deacetylase 6(HDAC6),a microtubule-associated enzyme critical for cell motility,contributes to angiogenesis by regulating the polarization and migration of vascular endothelial cells.Inhibition of HDAC6 activity impairs the formation of new blood vessels in chick embryos and in angioreactors implanted in mice.The requirement for HDAC6 in angiogenesis is corroborated in vitro by analysis of endothelial tube formation and capillary sprouting.Our data further show that HDAC6 stimulates membrane ruffling at the leading edge to promote cell polarization.In addition,microtubule end binding protein 1(EB1)is important for HDAC6 to exert its activity towards the migration of endothelial cells and generation of capillary-like structures.These results thus identify HDAC6 as a novel player in the angiogenic process and offer novel insights into the molecular mechanism governing endothelial cell migration and angiogenesis.
核膜在细胞周期中呈现高度的动态性:在细胞分裂的前中期,核膜崩解并分散到细胞质中;在细胞分裂的后期,核膜开始在染色体的表面重新装配,最终形成完整的核膜结构。近期的研究发现,Ran GTP酶、物质转运蛋白importinβ、内层核膜蛋白LBR(lamin B receptor)以及核孔复合体蛋白nucleoporins在核膜重建的过程中起关键性调控作用,并受到细胞周期调控因子p34cdc2激酶的调节。LBR是一个八次跨膜的膜蛋白,主要定位于内层核膜。在细胞分裂的早期,随着核膜崩解,LBR与核膜崩解而生成的小膜泡一起分散到细胞质中;在细胞分裂的后期,通过LBR与importinβ相互结合,含有LBR的膜泡被importinβ携带至染色质的表面参与核膜重建。目前已知p34cdc2激酶对LBR与importinβ介导的核膜重建起重要调控作用。Nucleoporins是核孔复合体主要组分。随核膜崩解,核孔复合体解聚成nucleoporins,分散到细胞质中,或结合到其他亚细胞成分上。细胞分裂后期,核孔复合体伴随核膜装配而组装。
Paclitaxel is a widely used microtubule drug and cancer medicine. Here we report that by short exposure to paclitaxel at a low dose, multipolar spindles were induced in mitotic cells without centrosome amplification. Both TPX2 depletion and Aurora-A overexpression antagonized the multipolarity. Live cell imaging showed that some paclitaxel-treated cells accomplished multipolar cell division and a portion of the daughter cells went on to the next round of mitosis. The surviving cells grew into clones with varied genome content. The results indicated that an aneuploidy population could be induced by short exposure to paclitaxel at a low dose, implicating potential side effects of paclitaxel.
BIAN MingLei1, FU JingYan1, YAN Yan1, CHEN Qiang1, YANG Chao2, SHI QingHua2,JIANG Qing1 & ZHANG ChuanMao1 1MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing 100871, China