Oxide nanostructures grown on noble metal surfaces are often highly active in many reactions,in which the oxide/metal interfaces play an important role.In the present work,we studied the surface structures of Fe Ox-on-Pt and Ni Ox-on-Pt catalysts and their activity to CO oxidation reactions using both model catalysts and supported nanocatalysts.Although the active Fe O1x structure is stabilized on the Pt surface in a reductive reaction atmosphere,it is prone to change to an Fe O2x structure in oxidative reaction gases and becomes deactivated.In contrast,a Ni O1x surface structure supported on Pt is stable in both reductive and oxidative CO oxidation atmospheres.Consequently,CO oxidation over the Ni O1x-on-Pt catalyst is further enhanced in the CO oxidation atmosphere with an excess of O2.The present results demonstrate that the stability of the active oxide surface phases depends on the stabilization effect of the substrate surface and is also related to whether the oxide exhibits a variable oxidation state.
Rentao MuQiang FuXiaoguang GuoXuejun XuDali TanXinhe Bao
The interface between a two-dimensional(2D)atomic crystal and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and catalytic reactions may occur. In this work, we demonstrate that oxygen intercalation and desorption occur at the interface between hexagonal boron nitride(h-BN) overlayer and Pt(111) surface by using near-ambient pressure X-ray photoelectron spectroscopy(NAP-XPS), photoemission electron microscopy, and low-energy electron microscopy.Furthermore, CO oxidation under the h-BN cover was also observed by NAP-XPS. The present results indicate that the nanospace under the 2D cover can be used for surface reactions, in which novel surface chemistry may be induced by the nanoconfinement effect.
In heterogeneous catalysis, the modulation of catalysis occurring on metal catalysts can be done by changing the electronic structure of the active surface through a modification of its composition and structure of the surface or the sub-surface [1]. Surface alloying is an effective method, and the electronic structure of the metal surface can be tuned by introducing