Transition-metal-salt-mediated radical reactions of fullerenes have attracted extensive attention as a new and important method for fullerene functionalization. The application of relatively cheap and easily available ferric perchlorate (Fe(ClO 4 ) 3 ) to the synthesis of [60]fullerene (C 60 ) has demonstrated remarkable advantages and afforded a series of novel fullerene derivatives. In this review we present our recent progress in this area and summarize the reactions of C 60 with malonate esters, β-keto esters, nitriles, aldehydes/ketones, and arylboronic acids in the presence of Fe(ClO 4 ) 3 to afford the C 60-fused disubstituted lactones, C 60-fused hemiketal, C 60-fused dihydrofuran, C 60-fused oxazoles, C 60-fused 1,3-dioxolanes, and fullerenyl boronic esters. The possible reaction mechanisms for the above-mentioned reactions are also described in detail.
The ferric perchlorate-promoted reaction of [60]fullerene (C60) with ethyl 2-methylacetoacetate generates fullerenyl hemiketal as a mixture of trans and cis isomers,while the reaction with ethyl acetoacetate gives a C 60-fused dihydrofuran derivative.A possible reaction mechanism for the formation of these products is proposed.