Three different nanorod-like gallium oxides with mono/poly-crystalline nature(α, β, and α/β-Ga2O3) were prepared by regulating the amount of polyethylene glycol(PEG) 6000 in the range of 0.2–0.8 g proportionally via a hydrothermal method combined with further calcination. The bandgap of the products, given by UV-Vis diffuse reflectance spectra(UV-Vis DRS), was in the order of α-Ga2O3 > α/β-Ga2O3 > β-Ga2O3. To further investigate the photocatalysis performance of the catalysts, the decomposition of rhodamine B(Rh B) by Ga2O3 under UV light illumination(λ < 387 nm) was presented and complete degradation could be achieved within 30 min, a result that showed the highest efficiency. The photocatalytic oxidation mechanism is further discussed and prominently related to the active species: hydroxyl radical(·OH) and superoxide radical(O·-2), which were confirmed by electron paramagnetic resonance(EPR).
In this study, bismuth oxyhalide(Bi OXs(X_Cl, Br, I)) semiconductors were prepared by a simple solvothermal method, with ethanol serving as solvent and a series of tetrabutylammonium halide surfactants as halogen sources. Under identical synthetic conditions, Bi OBr was more readily constructed into regular flower-like hierarchical architectures. The photocatalytic properties of the materials were studied by monitoring the degradation of rhodamine B(Rh B),with visible light absorption, and colorless salicylic acid(SA). It was found that both Rh B and SA were rapidly degraded on the surface of Bi OBr. Bi OCl was rather active for the degradation of Rh B,but ineffective toward the degradation of SA. However, neither Rh B nor SA could be degraded effectively in the case of Bi OI. Further experiments such as UV–visible spectroscopy and detection of U OH and O2 Uradicals suggest that the electronic structure of the Bi OX photocatalysts is responsible for the difference in their activities.
Manke JiaXiaolong HuShulian WangYingping HuangLirong Song
Visible light irradiation combined with homogeneous iron and/or hydrogen peroxide to degrade organic dye rhodamine B (RhB) and small molecular compound 2,4-dichlorophenol (2,4-DCP) in a home-made bottle reactor was assessed. The concen-tration of oxidize species, Fe3+ and Fe2+ were determined during the degradation process. The results demonstrated that visible light irradiation combined with electro-Fenton improved the degradation efficiency. Moreover, both RhB and 2,4-DCP were mineralized during visible light synergistic electro-Fenton oxidation process. 95.0% TOC (total organic carbon) removal rate of RhB occurred after 90 min and 96.7% of COD (chemical oxygen demand) removal rate after 65 min of irradiation. 91.3% TOC removal rate of 2,4-DCP occurred after 16 h of irradiation and 99.9% COD removal rate occurred after 12 h of illumination. The degradation and oxidation process was dominated by the hydroxyl radical ( · OH) generated in the system. Both the impressed electricity and dye sensitization by visible light facilitated the conversion between Fe3+ and Fe 2+ , thus, improving Fenton reaction efficiency.
A hydrophobic complex of Cu2+[bis-salicylic aldehyde-o-phenylenediamine], Cu-SPA, was prepared and used as a heterogeneous photocatalyst to degrade organic pollutants in water under visible irradiation (λ≥420 nm) at neutral pH. The structure of complex was characterized by using nuclear magnetic resonance (NMR), elemental analysis, IR and UV-vis spectrometries. Degradation of Rhodamine B (RhB), Sulforhodamine B (SRB) and Benzoic acid (BA) in water were used as model reactions to evaluate the photocatalytic activities of Cu-SPA. The results indicated that RhB and SRB were easily adsorbed on the hydrophobic surface of Cu-SPA from aqueous solution (the maximum adsorption amount: Qmax = 11.09 and 8.05 μmol/g, respectively). Under visible irradiation, RhB and SRB were decolorized completely after 210 and 240 min, respectively, and BA was removed completely after 5 h. The efficiency of H202 was 〉 95%, in contrast to that of the reaction without catalyst or light (〈 20%). In water soluble medium, the hydrophobic Cu-SPA can be used more than 6 cycles. ESR results and the behavior of cy- clic voltammetry showed that, in the reaction process, Cu2+-SPA was reduced to intermediate state Cu+-SPA firstly, which was extremely unstable and reacted rapidly with H2O2, leading to high reactive oxygen species (.OH radical ) to degrade the substrate.
SONG QuanJIA ManKeMA WanHongFANG YanFenHUANG YingPing
A novel composite electrode was constructed by pressing together Co3O4 and graphite and it was used as the cathode in an electro-Fenton-like (EFL) system. The poor electron transport characteristic of Co3O4 was overcome by incorporating graphite. In situ electro-catalytic generation of hydroxyl radicals (·OH) occurred at high current efficiencies from pH 2-10, extending the traditional Fenton reaction pH range. Cyclic voltammetry and AC impedance spectrometry were used to characterize the composite electrode. The ability of the EFL system to degrade organic compounds was investigated using sulforhodamine B (SRB) and 2,4-dichlorophenol (2,4-DCP) as probes. Decoloration of SRB (1.0×10-5 mol/L) was complete (100%) in 150 min and SRB was effectively degraded from pH 2-10. The decomposition of SRB was studied using Fourier transform infrared spectroscopy (FT-IR) and total organic carbon (TOC) analysis and results indicated that the final degradation products were carbon dioxide, carboxylic acids and amines. The EFL system also decomposed 2,4-DCP and the degradation was 98.6% in 240 min. Electro-catalytic degradation of SRB occurs by a ·OH mechanism. After 5 times reused, the degradation rate of SRB did not significantly slow down. The electrode shows excellent potential for use in advanced oxidation processes (AOPs) used to treat persistent organic pollutants (POPs) in wastewater.
LIU ShuanGU YanWANG ShuLianZHANG YuFANG YanFenJOHNSON David MHUANG YingPing