On the basis of compiled multidisciplinary historical data in 2006-2007 and incorporation of relevant simulation results and re- mote sensing data, we performed an in-depth study of the generation and dissipation process of the hypoxic zone and its distribu- tion morphology and structure off the Yangtze River estuary, Based on the hydrological circulation dynamics, reproduction of phytoplankton (leading to the decomposition of organic matter), and other factors, we comprehensively and systematically inves- tigated the generation and dissipation of the hypoxic zone and underlying mechanisms for the seasonal variation in its position, explored the multi-factorial synergistic reactions during the generation and dissipation process of the hypoxic zone, and revealed the controlled mechanism for the morphology and structure of the hypoxic zone's distribution. Our studies indicate that in the winter and spring seasons, the hydrological environment off the Yangtze River estuary provides a water body with relatively low contents of dissolved oxygen (DO), which is the background for the formation of a hypoxic zone. After entering into the summer season, the hypoxic zone gradually develops towards the north and becomes mature. Because of the impact of the terrain, local decomposition of organic matter, and upwelling of the Kuroshio subsurface water in July-August, the bypoxic zone off the Yang- tze River estuary exhibits the characteristics of discontinuous distribution in space and has a south and north "dual-core" structure in the inner continental shelf. In addition, there is a hypoxic core in the eastern outer continental shelf. The degrees of hypoxia vary for different areas; they are strongest overall in the north, next strongest in the south; they are weakest on the outer continen- tal shelf. In summer, the hypoxic zone in the north is related to the northward differentiation of the southern hypoxic zone and re- sults from local development and intensification. In August, the hypoxic zone in the north r