We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers during CHINARE 21(2004/2005) and CHINARE 29(2012/2013).The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems,and GPS measurements showed smooth surface slopes around the station with altitudes of 2607-2636 m above sea level(a.s.l.).Radar profiles indicate an average ice thickness of 1900 m,with a maximum of 1949 m and a minimum of 1856 m,within a square area measuring approximately 2 km × 2 km in the vicinity of the station.The ice thickness beneath the station site is 1870 m.The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l.,revealing part of a mountainous topography.The ice volume in the grid is estimated to be 7.6 km^3.Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site,some disturbed internal layers are identified and traced;the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.
The 2012/2013 Chinese Antarctic Research Expedition (CHINARE) 's inland traverse from Zhongshan station to Kunlun station on the East Antarctic ice sheet provided an opportunity to reveal englacial freeze-on ice using ice-penetrating radar. A radar dataset along the profile was collected using a new ground-based radar system with a high frequency of 150 MHz. A typical example of a freeze-on ice structure was revealed in the radar images, similar to that found in the Dome A region. The subglacial stratigraphy showed a new freeze-on ice zone with a length of 10 km near the ice-bedrock interface along the traverse, located 1,044-1,056 km from the coast.
Located on the centre of ice drainage range, the highest Dome Argus (Dome A) of East Antarctic Ice Sheet (EAIS), could be represented as an ideal site for deep ice cores drilling containing oldest paleo-climate records. To select a suitable drilling site for deep ice core, it needs gather all information pertaining to the local meteorology, ice sheet landforms, ice thickness, subgla- cial topography of bed rocks, ice velocity, internal structures of ice sheet, etc. Based on the International Partnerships in Ice Core Sciences (IPICS), we present recent achievement of glaciological research and its perspective at Dome A in this paper. We system- atically discussed the merits and possible ventures of potential drilling sites around Dome A. Among all the candidates, we find that the Chinese Antarctic Kunlun Station is the best site for and assess further the possibility to obtain a replicate core for carrying out the first deep ice core drilling campaign. We emphasize studying dynamics and evolution of climate change.
TANG Xueyuan SUN Bo LIYuansheng LI Xin CUI Xiangbin