In this study, the surface chemical functional groups of Bacillus cereus biomass were identified by Fourier transform infrared (FTIR) analytical technique. It had been shown that the B. cereus cells mainly contained carboxyl, hydroxyl, phosphate, amino and amide functional groups. The potentiometric titration was conducted to explain the surface acid-base properties of aqueous B. cereus biomass. The computer program FITEQL 4.0 was used to perform the model calculations. The optimization results indicated that three sitesthree pKas model, which assumed the cell surface to have three distinct types of surface organic functional groups based on the IR analysis results, simulated the experimental results very well. Moreover, batch adsorption experiments were performed to investigate biosorption behavior of Cu(Ⅱ) and Pb(Ⅱ) ions onto the biomass. Obviously, the adsorption equilibrium data for the two ions were reasonably described by typical Langmuir isotherm.