Weak signal detection based on stochastic resonance (SR) can hardly succeed when noise intensity exceeds the optimal value of SR. This paper explores a novel parallel bistable SR array mechanism by decomposed multi-scale noises from input signal. A smoother output with lower noise is obtained from the combination of colored noise SR ellect and parallel bistable SR array. The influence of noise intensity and array size on the SR effect and output noise intensity is analyzed through numerical simu- lation. A signal detection method based on the new SR mechanism and normalized scale transform is proposed for the case of heavy background noise. Simulation is conducted to confirm the effectiveness of parameter tuning and amplitude tuning of normalized scale transform on the proposed SR model. The proposed method has three advantages: the input noise intensity of each unit is reduced by wavelet decomposition; the output noise level decreases due to array ensemble average; the SR effect of each unit is optimized by normalized scale transform for high frequency signal. Experiment on bearing inner and outer race fault diagnosis has verified the effectiveness and advantages of the proposed SR model in comparison with traditional SR method and kurlogram.