The propagation of wave packets and its relationship with the subtropical jet was investigated for the period 26 29 January 2008 over southern China using ECMWF Interim re-analysis data. Wave packets propagated from the north to the south side of an upper front with eastward development along the upper front during this period. Due to the eastward development of propagation, the acceleration of geostrophic westerly winds shifted eastward along the front. There were two primary sources of the propagation of wave packets at around 30°N. The first was the temperature inversion layer below 500 hPa, and the second was baroclinic zones located along the polarward flank of the subtropical jet in the middle and upper troposphere. Most wave packets propagated horizontally from the baroclinic zones and then converged on the zero meridional gradients of zonal winds.
A new invariant called the generalized Ertel Rossby invariant (GER) was developed in this study. The new invariant is given by the dot product of the generalized vorticity and the generalized velocity. The generalized vortieity is the absolute vorticity minus the cross product of the gradient of Lagrangian--time integrated temperature and the gradient of entropy. The generalized velocity is the absolute velocity minus the sum of the gradient of Lagrangian-time integrated kinetic potential and the Lagrangian time integrated temperature multiplied by the gradient of entropy. In addition to the traditional potential vorticity, the GER invariant may provide another useful tool to study the atmospheric dynamic processes for weather phenomena ranging from large scales to small scales.
The present study investigates modulation of western North Pacific (WNP) tropical cyclone (TC) genesis in relation to different phases of the intraseasonal oscillation (ISO) of ITCZ convection during May to October in the period 1979 2008. The phases of the ITCZ ISO were determined based on 30-80-day filtered OLR anomalies averaged over the region (5°20′N, 120°150′E). The number of TCs during the active phases was nearly three times more than during the inactive phases. The active (inactive) phases of ISO were characterized by low-level cyclonic (anticyclonic) circulation anomalies, higher (lower) midlevel relative humidity anomalies, and larger (smaller) vertical gradient anomalies of relative vorticity associated with enhanced (weakened) ITCZ convection anomalies. During the active phases, TCs tended to form in the center of the ITCZ region. Barotropic conversion from the low-level mean flow is suggested to be the major energy source for TC formation. The energy conversion mainly depended on the zonal and meridional gradients of the zonal flow during the active phases. However, barotropic conversion weakened greatly during the inactive phases. The relationship between the meridional gradient of absolute vorticity and low-level zonal flow indicates that the sign of the absolute vorticity gradient tends to be reversed during the two phases, whereas the same sign between zonal flow and the absolute vortieity gradient is more easily satisfied in the active phases. Thus, the barotropie instability of low-level zonal flow might be an important mechanism for TC formation over the WNP during the active phases of ISO.
South China (SC) experienced persistent heavy rain in June 2010. The climatic anomalies and related mechanism are analyzed in this study. Results show that the large-scale circulation pattern favorable for precipitation was maintained. In the upper level, the South Asian High and westerly jet stream provided a divergent circulation over SC. In the middle and low levels, an anomalous strong subtropical high (STH) extended to the South China Sea. The southwesterly monsoon flow along the northwest flank of the STH transported abundant water vapor from the western North Pacific, the Bay of Bengal, and the South China Sea to SC. The precipitation can be classified into two types: the West Siberia low (WSL)-induced low-level cyclone mode, and the STH-induced low-level jet mode. STH and WSL indices are defined to estimate the influence of these two systems, respectively. Analysis shows that both are critical for precipitation, but their respective contributions differ from year to year. In 2010, both were important factors for the heavy rainfall in June.
The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming appeared in northern Asia in a positive AO phase. This result corresponded to an enhanced anticyclonic flow at 850 hPa over northeastern Asia and a weakened East Asian trough (EAT) at 500 hPa. However, during winters with low solar activity (LS), both the surface warming and the intensities of the anticyclonic flow and the EAT were much less in the presence of a positive AO phase. The possible atmospheric processes for this 11-year solar-cycle modulation may be attributed to the indirect influence that solar activity induces in the structural changes of AO. During HS winters, the sea level pressure oscillation associated with the AO became stronger, with the significant influence of AO extending to East Asia. In the meantime, the AO-related zonal-mean zonal winds tended to extend more into the stratosphere during HS winters, which implies a stronger coupling to the stratosphere. These trends may have led to an enhanced AO phase difference; thus the associated East Asian climate anomalies became larger and more significant. The situation tended to reverse during LS winters. Further analyses revealed that the relationship between the winter AO and surface-climate anomalies in the following spring is also modulated by the 11-year solar cycle, with significant signals appearing only during HS phases. Solar-cycle variation should be taken into consideration when the AO is used to predict winter and spring climate anomalies over East Asia.
The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden warming (SSW) event of January 2009. The Western Europe high plays important roles in the propagation of the energy from North America to Eurasian. When the Western Europe high appeared and shifted eastward, energy conversions increased and energy propagated from North America to Eurasian as a form of interaction energy flow. The baroclinic conversion between transient-eddy kinetic energy (Ke) and transient-eddy available potential energy (Ae) and the horizontal advection of geopotential height were approximately one order of magnitude less than Ke and Ae generation terms. So, these terms were less important to this SSW event.
A new invariant, the second order potential vorticity(SPV), is derived in this paper. SPV is the dot product of vorticity and the potential vorticity(PV) gradient, and is proven conservative for a compressible, adiabatic and frictionless atmosphere. Research shows that the new invariant may be used to indicate the evolution of PV, because SPV includes all the information that determines PV evolution: the wind field, and the PV gradient. Furthermore, SPV is capable of diagnosing heavy precipitation because of the strong signals it presents in areas of heavy rainfall. SPV also shows great potential as a comprehensive conserved quantity for indicating the dynamical tropopause and baroclinic instability.