The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.
Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg-de Vries (KdV) equation, and the dissipative term in the KdV equation is not taken into account. However, the dissipative term is very important, both in the synthetic aperture radar images and in ocean models. In this paper, the traveling-wave structure to characterize the ocean internal wave phenomenon is modeled, the results of numerical experiments are advanced, and a theoretical hypothesis of the traveling wave to retrieve the ocean internal wave parameters in the synthetic aperture radar images is introduced.
The sea level pressure field can be computed from sea surface winds retrieved from satellite microwave scatterometer measurements, based on variational assimilation in combination with a regularization method given in part I of this paper. First, the validity of the new method is proved with a simulation experiment. Then, a new processing procedure for the sea level pressure retrieval is built by combining the geostrophic wind, which is computed from the scatterometer 10-meter wind using the University of Washington planetary boundary layer model using this method. Finally, the feasibility of the method is proved using an actual case study.
Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily^derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments axe designed to validate the sufficient conditions. The results agree with the derived suf- ficient conditions.