Hepatitis C virus (HCV), a positive single-stranded RNA virus, is a major cause of liver disease in humans. Herein we report a novel strategy to inhibit the reproduction and translation of HCV using a short RNA, named an Additional RNA, to activate the endonuclease activity of Argonaute 2 (Ago2). In the presence of the Additional RNA, the HCV genome RNA has the requisite 12 nucleotides of base-pairing with microRNA-122. This activates the endonuclease activity of Ago2, resulting in cleavage and release of the HCV genome RNA from Ago2 and microRNA-122. The free HCV genome RNA would be susceptible to intracellular degradation, effectively inhibiting its reproduction and translation. This study presents a new method to inhibit HCV that may hold great potential for HCV treatment in the future.
Pathological bio-mineralization can be induced by diseases such as preeclampsia. Inspired by these naturally occurring bio-mineralization processes, we have designed a process called protein-controlled peptide assembly tandem peptide- templated bio-mineralization. The technique provides bio-context-associated data on the activity of target proteins, and facilitates the evaluation of protein function in the associated biological microenvironment. It is a bio-mimetic process that leads to the formation of Ag nanoparticle-decorated peptide nanowires, which can offer efficient signal amplification with high sensitivity for biosensing applications. Consequently, high-temperature requirement factor A1 (HtrA1) can be assayed quantitatively in clinical serum samples to offer information for the diagnosis of preeclampsia and the improved treatment of the disease. The results suggest that the process has considerable potential for use in clinical practice.