With extensive use of flash-based field-programmable gate arrays(FPGAs) in military and aerospace applications, single-event effects(SEEs) of FPGAs induced by radiations have been a major concern. In this paper, we present SEE experimental study of a flash-based FPGA from Microsemi Pro ASIC3 product family. The relation between the cross section and different linear energy transfer(LET) values for the logic tiles and embedded RAM blocks is obtained. The results show that the sequential logic cross section depends not too much on operating frequency of the device. And the relationship between 0 →1 upsets(zeros) and 1 →0 upsets(ones) is different for different kinds of D-flip-flops. The devices are not sensitive to SEL up to a LET of 99.0 Me V cm2/mg.Post-beam tests show that the programming module is damaged due to the high-LET ions.
Zhen-Lei YangXiao-Hui WangHong SuJie LiuTian-Qi LiuKai XiBin WangSong GuQian-Shun She
Single event upsets(SEUs) induced by heavy ions were observed in 65 nm SRAMs to quantitatively evaluate the applicability and effectiveness of single-bit error correcting code(ECC) utilizing Hamming Code.The results show that the ECC did improve the performance dramatically,with the SEU cross sections of SRAMs with ECC being at the order of 10^(-11) cm^2/bit,two orders of magnitude higher than that without ECC(at the order of 10^(-9) cm^2/bit).Also,ineffectiveness of ECC module,including 1-,2- and 3-bits errors in single word(not Multiple Bit Upsets),was detected.The ECC modules in SRAMs utilizing(12,8) Hamming code would lose work when 2-bits upset accumulates in one codeword.Finally,the probabilities of failure modes involving 1-,2- and 3-bits errors,were calcaulated at 39.39%,37.88%and 22.73%,respectively,which agree well with the experimental results.