A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometry (UV-vis). The AgBr/ZnO hybrid nanophotocatalyst has excellent photocatalytic activity for photodegradation of methyl orange (MO) under sunlight irradiation. The MO degradation efficiency for AgBr/ZnO is about 98% after 1 hour under sunlight irradiation. These results suggested that AgBr/ZnO is a promising candidate for the development of highly efficient sunlight photocatalysts. In addition, the photocatalytic mechanism of AgBr/ZnO under sunlight irradiation is illustrated and discussed.
Mn-doped Cu3N films were deposited by cylindrical magnetron sputtering equipment on the common glass at room temperature. The incorporation of Mn can change the preferred growth orientation from Cu-rich plane (111) to N-rich plane (100) due to the improvement of nitridation of Cu. The shrinkage of the lattice and the X-ray photoelectron spectroscopy results reveal that Mn should replace Cu atoms in the lattice or be segregated in the grain boundaries. The thickness of Mn-doped film is smaller than that of the pure one due to the less physisorption of N species among the columnar grains. The mean grain size and the energy gap become larger with increasing Mn concentration to 2.2 at.% and then decrease when the concentration of Mn is higher than 2.2 at.%. Notably, weak doping of 1.5 at.% Mn successfully promotes the decomposed temperature by -50℃. According to the results of XRD and SEM for Mn- doped films annealed in vacuum, a possible decomposed mechanism with increasing the annealing temperature is proposed.
Xiaoyan FanZhenjiang LiAlan MengChun LiZhiguo WuPengxun Yan