Soft sensing has been widely used in chemical industry to build an online monitor of the variables which are unmeasurable online or measurable online but with a high cost. One inherent difficulty is insufficiency of the training samples because the labeled data are limited. Besides, the traditional soft-sensing structure has no online correction mechanism. The forecasting result may be incorrect if the working condition is changed. In this work, a semi-supervised learning(SSL) method is proposed to build the soft-sensing model by use of the unlabeled data. Meanwhile, an online correction mechanism is proposed to establish a soft-sensing approach. The mechanism estimates the input variables at each step by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and generalization ability than other approaches.
Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.