您的位置: 专家智库 > >

国家自然科学基金(61300214)

作品数:17 被引量:50H指数:5
相关作者:胡振涛刘先省张谨胡玉梅袁光耀更多>>
相关机构:河南大学郑州信息工程职业学院西北工业大学更多>>
发文基金:国家自然科学基金河南省高校科技创新团队支持计划中国博士后科学基金更多>>
相关领域:自动化与计算机技术电子电信农业科学更多>>

文献类型

  • 17篇中文期刊文章

领域

  • 15篇自动化与计算...
  • 5篇电子电信
  • 1篇农业科学

主题

  • 6篇滤波
  • 4篇OBSERV...
  • 4篇MULTI-...
  • 3篇线性滤波
  • 3篇卡尔曼
  • 3篇非线性滤波
  • 3篇UPDATE
  • 3篇BASED_...
  • 2篇多模
  • 2篇神经网
  • 2篇神经网络
  • 2篇网络
  • 2篇滤波算法
  • 2篇卡尔曼滤波
  • 2篇集合卡尔曼滤...
  • 2篇交互式多模型
  • 2篇ITERAT...
  • 1篇迭代
  • 1篇动目标
  • 1篇动目标跟踪

机构

  • 9篇河南大学
  • 1篇西北工业大学
  • 1篇郑州信息工程...

作者

  • 8篇胡振涛
  • 6篇刘先省
  • 4篇张谨
  • 3篇胡玉梅
  • 2篇李军伟
  • 2篇郭振
  • 2篇袁光耀
  • 1篇金勇
  • 1篇付春玲
  • 1篇赵新强
  • 1篇张勇

传媒

  • 7篇High T...
  • 2篇电子学报
  • 2篇控制与决策
  • 2篇计算机科学
  • 1篇系统工程与电...
  • 1篇光电子.激光
  • 1篇控制理论与应...
  • 1篇农机化研究

年份

  • 1篇2023
  • 2篇2017
  • 8篇2016
  • 3篇2015
  • 3篇2014
17 条 记 录,以下是 1-10
排序方式:
基于容积卡尔曼滤波的神经网络训练算法被引量:8
2016年
针对现有的利用非线性滤波算法对神经网络进行训练中存在滤波精度受限和效率不高的缺陷,提出一种基于容积卡尔曼滤波(CKF)的神经网络训练算法.在算法实现过程中,首先构建神经网络的状态空间模型;然后将网络连接权值作为系统的状态参量,并采用三阶Spherical-Radial准则生成的容积点实现神经网络中节点连接权值的训练.理论分析和仿真结果验证了所提出算法的可行性和有效性.
胡振涛袁光耀胡玉梅刘先省
关键词:非线性滤波神经网络多层感知器
A novel multi-sensor multiple model particle filter with correlated noises for maneuvering target tracking被引量:3
2014年
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
胡振涛Fu Chunling
基于量测迭代更新集合卡尔曼滤波的机动目标跟踪算法被引量:10
2014年
在机动目标跟踪中,用于模型辨识和状态估计的非线性滤波器的合理选择和优化是提升滤波精度的关键.融合量测迭代更新集合卡尔曼滤波和交互式多模型(interacting multiple models,IMM)方法,本文提出了基于量测迭代更新集合卡尔曼滤波的机动目标跟踪算法.通过迭代更新思想的引入构建了一种量测迭代更新下集合卡尔曼滤波的实现结构,并将其作为IMM的模型滤波器实现对于目标运动模式和状态的辨识与估计.针对算法结合过程中滤波精度和计算量的平衡,设计了用于输入交互环节的状态估计样本,同时简化输入交互环节和输出交互环节中滤波误差协方差矩阵的交互过程.理论分析和仿真结果验证了算法的可行性和有效性.
胡振涛张勇刘先省
关键词:机动目标跟踪非线性滤波集合卡尔曼滤波交互式多模型
基于迭代容积卡尔曼滤波的神经网络训练算法被引量:1
2016年
针对现有应用非线性滤波算法对神经网络进行训练时存在精度不足的问题,提出了一种基于迭代容积卡尔曼滤波的神经网络训练算法。首先,将前馈神经网络各个节点的连接权值和偏置作为状态向量,建立前馈神经网络的状态空间模型。其次,利用Spherical-Radial准则生成容积点,并依据Gauss-Newton迭代策略来优化量测更新过程中获取的状态估计值和状态估计误差协方差,通过容积卡尔曼滤波估计精度的改善,提升神经网络节点的连接权值和偏置的训练效果。理论分析和仿真实验结果验证了所提算法的可行性和有效性。
袁光耀胡振涛张谨赵新强付春玲
关键词:前馈神经网络状态空间模型
基于Metropolis-Hastings采样的多传感器集合卡尔曼滤波算法
2017年
集合卡尔曼滤波是近年来发展起来的一种处理非线性系统估计的有效解决方法.针对标准集合卡尔曼滤波实现过程中,量测噪声不确定导致自举量测采样出现一致性偏差问题,提出了一种基于Metropolis-Hastings采样的多传感器集合卡尔曼滤波算法.首先,结合多传感器量测系统的物理特性和集合卡尔曼滤波中自举量测生成机理,构建多传感器条件下自举量测集合.其次,通过对多传感器自举量测似然度求解以及在量测接受概率函数合理设计基础上,利用Metropolis-Hastings采样策略实现有效量测的确认.新算法通过对多传感器量测中冗余和互补信息的提取与利用实现对一致性偏差的修正,进一步改善被估计系统状态的滤波精度.理论分析和仿真实验结果验证了算法的可行性和有效性.
胡振涛张谨胡玉梅金勇
关键词:非线性滤波集合卡尔曼滤波
Two-stage prediction and update particle filtering algorithm based on particle weight optimization in multi-sensor observation
2014年
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
胡振涛Liu XianxingLi Jie
Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion
2016年
The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.
胡振涛Hu YumeiGuo ZhenWu Yewei
Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update被引量:4
2015年
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.
胡振涛Fu ChunlingCao ZhiweiLi Congcong
量测提升卡尔曼滤波被引量:7
2016年
滤波器设计是系统辨识和状态估计的重要基础.卡尔曼滤波通过状态预测和量测更新的实现框架,在最小方差准则下实现对目标状态的最优估计,但在单传感器量测环境中其滤波精度易受量测噪声随机性的影响.本文提出一种基于量测提升策略的卡尔曼滤波算法实现框架,新方法依据当前时刻量测和量测噪声先验统计信息构建虚拟量测,并通过对虚拟量测采样以及融合提升系统量测信息可靠性,进而改善状态估计精度.同时,针对算法在工程应用中实时性、准确性以及鲁棒性等需求,设计了分布式加权融合和集中式一致性融合的两种实现结构.理论分析和仿真实验结果验证了算法的可行性和有效性.
胡振涛胡玉梅刘先省
关键词:卡尔曼滤波
基于Einstein算子的证据冲突度量方法被引量:3
2017年
为了有效度量融合证据之间的冲突,在分析冲突因子和典型证据冲突度量方法不足的基础上,提出了一种基于Einstein算子的证据冲突度量方法。首先,利用证据向量度量思想给出证据之间的差异度矩阵,并定义对数形式的差异因子;然后,引入模糊集相似关系定义证据之间的相关系数;最后,综合考虑证据之间的差异性和相关性,利用Einstein算子定义一种新的证据冲突度量因子。仿真实验结果表明:该方法不但可以有效度量证据之间的冲突程度,而且对冲突证据的融合具有良好的收敛性。
李军伟刘先省胡振涛
关键词:证据理论
共2页<12>
聚类工具0