Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.