The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect,while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs.The stability of ZnO QDs was studied with different dispersion degrees at 0?C and at room temperature of 25?C.The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time.With the ageing of Zn O QDs,the agglomeration is aggravated and the surface defects increase,which leads to the defect emission.
In this work, a simple method to modulate the crystal phase and morphology with a large amount of K+ions codoping is proposed. The phase changes to the mixture of β-Na YF4 and β-KYF4 with increasing the content of K^+ions to 80 mol%.When it exceeds 80 mol%, β-Na YF4 disappears gradually and β-KYF4 dominates with a poor crystalline. In addition, the morphology changes from nanosphere to nanoplate, and then to nanoprism, which indicates that a higher content of K^+ions favors the growth rates along [0001] than the [10-10] of the nanocrystals. Additionally, the upconversion(UC) luminescence properties and the ratio of red/green(R/G) UC intensity of samples with different phases and morphologies are detected,which makes it possible to tune the UC fluorescence by varying the concentration of K^+ions.
Different concentrations of Mg^(2+) -doped hexagonal phase NaGdF_4:Yb^(3+), Er^(3+)nanocrystals(NCs) were synthesized by a modified solvothermal method. Successful codoping of Mg^(2+)ions in upconversion nanoparticles(UCNPs) was supported by XRD, SEM, EDS, and PL analyses. The effects of Mg^(2+)doping on the morphology and the intensity of the upconversion(UC) emission were discussed in detail. It turned out that with the concentration of Mg^(2+)increasing, the morphology of the nanoparticles turn to change gradually and the UC emission was increasing gradually as well. Notably the UC fluorescence intensities of Er^(3+)were gradually improved owing to the codoped Mg^(2+)and then achieved a maximum level as the concentration of Mg^(2+)ions was 60 mol% from the amendment of the crystal structure of β-NaGdF_4:Yb^(3+),Er^(3+)nanoparticles. Moreover, the UC luminescence properties of the rare-earth(Yb3+, Er^(3+)) ions codoped NaGdF_4 nanocrystals were investigated in detail under 980-nm excitation.