A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.
Protic ionic liquid (PIL) triethylammonium acetate was prepared by mixing equimolar amounts of acetic acid and triethylamine, and then studied using the combination of the Attenuated Total Reflection Fourier Transform Infrared spectroscopy, in-situ infrared spectroscopy, pH, and conductivity titration measurements. It was found that the equimolar synthesized triethylammonium acetate was separated into two layers, which suggesting that there were both chemical and phase equilibrium in this solution. Molecular species could be directly observed in the IR spectra over the range of 1200-1800 cm-1 and also checked by 1H NMR. Based on analysis, the upper layer was rich in amine with little acid and PIL, and the down layer was rich in PIL with residual acetic acid and amine. And single PIL-rich layer could be separated into two layers again when the mole ratio of newly added triethyamine to the theoretical produced triethylammonium acetate reached 0.12.