In order to solve the deformation of the hydrostatic thrust bearing with multi-pad annular recess in the heavy computer numerical control ( CNC ) equipment, the simulation concerning pressure feld of hydrostatic thrust bearing with multi-pad annular recesses was carded out. The finite volume method of computational fluid dynamics ( CFD ) was used to compute the three-dlmensional pressure field of gap fluid between the rotary worktable and the base. The influence of the rotational speed on the bearing pressure performance was studied based on CFD and lubrication theory, and the method revealed the pressure distribution law. The results qualitatively agree well with the experimental data. The results indicate that the oil cavity pressure decreases gradually with rotational speed enhancing. The reliability of a hydrostatic thrust bearing with malti-pad annular recess can be predicted through this method, and the optimal design of such products can be achieved, and the numerical simulation method can provide reasonable data for design, lubrication, experiment, and deformation computation of hydrostatic thrust bearing in the heavy CNC equipment.
To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bearing is built with consideration of variable viscosity. The pressure field in the clearance oil film of the hydrostatic bearing at various velocities is simulated based on the Finite Volume Method (FVM) by using the software of Computational Fluid Dynamics (CFD). Some pressure experiments on the hydrostatic bearing were carried out and the results verified the rationality of the simplified model of the pad and the validity of the numerical simulation. It is concluded that the viscosity has a great influence on the pressure in the heavy hydrostatic bearing and cannot be neglected, especially, in cases of high rotating speed. The results of numerical calculations provide the internal flow states inside the bearing, which would help the design of the oil cavity structure of the bearing in engineering practice.
For a heavy hydrostatic bearing with a high linear velocity, the results of numerical calculations often differ from practical conditions if the viscosity is considered as constant. In this article, the influence of the oil cavity depth on the temperature field in the heavy hydrostatic bearing is discussed in the context of variable viscosity. The viscosity-temperature relations for the gap oil film are first established by fitting B-Spline curves, then, numerical calculations for the temperature field in the heavy hydrostatic bearing of different oil cavity depths are carried out based on Finite Volume Method (FVM) under the same rotating speed, and the influence of the oil cavity depth on the temperature distribution in the gap oil film of the hydrostatic bearing is discussed. The results of numerical calculations provide the temperature distribution state inside the hydrostatic bearing, which would help the selection and the design of hydrostatic bearings in engineering practice.
SHAO Jun-peng DAI Chun-xi ZHANG Yan-qin YU Xiao-dong XU Xiao-qiu WANG Yun-fei
A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.
In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.