A scheme is proposed for generating a multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is needless. In the ideal case, losses due to the spontaneous transition of an atom and the excitation of photons are efficiently suppressed since atoms are all in ground states and the fields remain in a vacuum state. Compared with the previous proposals, the present scheme reduces its required operation time via simultaneously controlling four classical fields. This advantage would become even more obvious as the number of atoms increases. The experimental feasibility is also discussed. The successful preparation of a high-dimensional multiparticle entangled state among distant atoms provides better prospects for quantum communication and distributed quantum computation.
Measurement-induced nonlocality(MIN) is a newly defined quantity to measure correlations in bipartite quantum states [Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401]. MIN in the n-qubit W and Greenberger–Horne–Zeilinger(GHZ) superposition states is considered. It is revealed that n = 3 and n ≥ 4 states have very different characteristics,especially the monogamy relation about MIN, and the monogamy equality of MIN is held in all n-qubit W states(n ≥ 3).
We propose a scheme for realizing an unconventional three-qubit controlled-phase gate via the Rydberg blockade mechanism.The qubit is encoded by atomic ensembles that are trapped in optical traps and fixed on an atom chip.Because of the collective nature of the encoding and the Rydberg blockade mechanism,the scheme do not require separate addressing of individual atoms.The time needed for the gate operation is much shorter than that in a similar scheme.In addition,we show the gate can be used as a basic tool for effective generation of large-scale 2D cluster states.
It is demonstrated that high-Q (Q - 10^8) bottle microresonators can be fabricated by using a C02 laser to heat a vertical single-mode fiber with a small weight attached to its lower end. A tunable continuons-wave laser is used to excite whispering-gallery modes in a bottle microresonator through a fiber taper, and a ringing phenomenon is observed. The observed ringing phenomenon is well explained through the numerical solution of a dynamic equa- tion. In addition, an explicit function is given to describe the light field in the resonator, and the theoretical transmission based on the function also agrees very well with the experimental ringing phenomenon.