在植物的生命周期中从营养生长到开花是发育过程的重要转折。花启动的时机对生殖生长的成功至关重要。植物开花时间突变体的获得,在揭示植物花发育的奥秘中起了十分重要的作用。本研究以模式植物拟南芥(A rabid op sis tha liana)为材料,将野生型拟南芥(Co lum b ia生态型)的种子用甲基黄酸乙酯(EM S)诱变处理,将经诱变处理的种子M1播种收获M2种子用于突变体筛选。以初生莲座叶片数作为筛选指标,筛选出一株晚花突变体,命名flx(flow ering locus x)。
Systemic acquired resistance (SAR), known as the broad-spectrum, inducible plant immunity, is a defense response triggered by pathogen infection. The response starts from the recognition of plant resistance (R) with the corresponding avirulence (avr) gene from the pathogen. There are some genes for convergence of signals downstream of different R/avr interacting partners into a single signaling pathway. Salicylic acid (SA) is required for the induction of SAR and involved in transducing the signal in target tissues. The SA signal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors that are involved in regulating SA-mediated gene expression. Some chemicals that mimic natural signaling compounds can also activate SAR. The application of biochemical activators to agriculture for plant protection is a novel idea for developing green chemical pesticide.
ZHAO Shu-qing and GUO Jian-boLaboratory of Biotechnology , Shanxi University , Taiyuan 030006 ,P. R. China