Tungsten carbide (WC) particles can be in-situ synthesized through the reaction between tungsten wires and molten of gray cast iron. The different composite coatings were obtained by adjusting the pouring temperature and the center distance of tungsten wires, and were comparatively observed by X-ray diffraction, scanning electron microscopy, and two-body abrasive wear tests. The results show that the intensities of the WC peaks increase by the increasing pouring temperature, and firstly become strong and then weak by the increasing center distance. In case of the pouring temperature 1 400 ℃ and the center distance 0.5mm, the formed WC particles present quadrilateral and triangle-structure and are homogenously distributed in the matrix. The wear rate of the composite coatings for stable center distance gradually increases by increasing the loads, however, at a constant pouring temperature, it firstly decreases from 5.91 to 2.97 mg/cm2·h, and slightly increases to 3.98 mg/cm2·h by increasing the center distance.