利用橡胶树GT1与IAN873杂交组合183株实生苗的F1代群体作为构图群体,利用SSR、SRAP、AFLP等3种分子标记对该群体进行遗传连锁分析,构建1张包括18个连锁群、372个标记位点的橡胶树分子遗传连锁图(LOD≥3),其中包括19个SSR标记、73个SRAP标记、280个AFLP标记,连锁图谱的总图距覆盖1 735.9 c M,所有标记间的平均图距为5.22 c M。在此连锁图谱上的标记区间为[8,46],所有连锁群长度区间为[55.3 c M,134.7 c M]。LG9连锁群包含标记最少为8个;LG1连锁群包含标记最多为46个;LG1的平均图距最小为2.80 c M;LG17的平均图距最大为7.92 c M。总图谱中存在图距大于20 c M的空隙为5个。
Cassava,a tropical food,feed and biofuel crop,has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition,which makes it highly suitable as a model plant for tropical crops.However,the understanding of the metabolism and genomics of this important crop is limited.The recent breakthroughs in the genomics of cassava,including whole-genome sequencing and transcriptome analysis,as well as advances in the biology of photosynthesis,starch biosynthesis,adaptation to drought and high temperature,and resistance to virus and bacterial diseases,are reviewed here.Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars.Finally,the current challenges and future potential of cassava as a model plant are discussed.
Shengkui ZHANGPing’an MAHaiyan WANGCheng LUXin CHENZhiqiang XIAMeiling ZOUXinchen ZHOUWenquan WANG