The local structures and optical absorption characteristics of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and ultraviolet-visible absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region.
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.
X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.
Since the invention of Zernike phase contrast method in 1930,it has been widely used in optical microscopy and more recently in X-ray microscopy.Considering the image contrast is a mixture of absorption and phase information,we recently have proposed and demonstrated a method for quantitative phase retrieval in Zernike phase contrast X-ray microscopy.In this contribution,we analyze the performance of this method at different photon energies.Intensity images of PMMA samples are simulated at 2.5 keV and 6.2 keV,respectively,and phase retrieval is performed using the proposed method.The results demonstrate that the proposed phase retrieval method is applicable over a wide energy range.For weakly absorbing features,the optimal photon energy is 2.5 keV,from the point of view of image contrast and accuracy of phase retrieval.On the other hand,in the case of strong absorption objects,a higher photon energy is preferred to reduce the error of phase retrieval.These results can be used as guidelines to perform quantitative phase retrieval in Zernike phase contrast X-ray microscopy with the proposed method.
Dual-energy X-ray absorptiometry(DEXA) has been widely applied to measure the bone mineral density(BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for lowZ materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging(XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials.
Grating-based X-ray imaging can make use of conventional tube sources to provide absorption, refraction and scattering contrast images from a single set of projection images efficiently. In this paper, a fresh cherry tomato and a dried umeboshi are imaged by using X-ray Talbot–Lau interferometer. The seed distribution in the scattering image of the cherry tomato, and the wrinkles of epicarp in the refraction image of the umeboshi, are shown distinctly. The refraction and scattering images provide more information on subtle features than the absorption image. Also, the contrast-to-noise ratio values show distinguishing capacity of the three kinds of imaging techniques. The results confirm that grating-based X-ray imaging is of great potential in non-destructive fruit testing.