Seafloor massive sulfide(SMS) deposits which consist of Au, Ag, Cu, and other metal elements, have been a target of commercial mining in recent decades. The demand for established and reliable commercial mining system for SMS deposits is increasing within the marine mining industry. The current status and progress of mining technology and equipment for SMS deposits are introduced. First, the mining technology and other recent developments of SMS deposits are comprehensively explained and analyzed. The seafloor production tools manufactured by Nautilus Minerals and similar mining tools from Japan for SMS deposits are compared and discussed in turn. Second, SMS deposit mining technology research being conducted in China is described, and a new SMS deposits mining tool is designed according to the environmental requirement. Finally, some new trends of mining technology of SMS deposits are summarized and analyzed. All of these conclusions and results have reference value and guiding significance for the research of SMS deposit mining in China.
LIU ShaojunHU JianhuaZHANG RuiqiangDAI YuYANG Hengling
Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.
A test rig for constant velocity water entry experiments was developed that drives a flatted-bottom section attached on six degree of freedom(6-DOF) platform to enter the water vertically at near constant velocity.The experiment system,which consists of drive and actuation system,water pool,model test sections,load cell,and control system,was presented.Water entry forces of different velocities were measured during impact process,and for each test case,three runs were performed with the same motion program to check the repeatability of the force readings.The experiment results are compared with two-dimensional(2D) CFD simulation methods for flatted-bottom rigid bodies with constant entry velocity.Experimental results indicate that the impact forces mainly depend on water entry velocities.It is concluded that the feasibility and accuracy of simulation methods has been validated.