For the desirable laser optical property, transition metals or rare-earths are always doped into parent glasses as active ions, and this doping will affect the crystallization of the precursor glasses inevitably. In this work, crystallization behavior of NaO-CaO-SiO2 system glasses doped with Nd2O3 was investigated. The crystallization kinetic parameters including the crystallization apparent activation energy (E) and the Avrami parameter (n) were also measured. The results show that the NaO-CaO-SiO2 system glassceramics with the NaxCa2Si3O9 crystal as primary phase can be highly crystalized as above 90%. The Nd2O3 doping has a significant influence on the crystallization apparent activation energy and the Avrami parameter, which affect the crystallization behavior and morphology of the transparent glass-ceramics of this system.
Coal fly ash is an industrial by-product generated during the combustion of coal for energy production. Due to the increasing annual consumption of coal power and the serious potential environmental threats of coal fly ash, a considerable amount of research on the utilization of coal fly ash has been undertaken worldwide. Vitrification seems to be one of the most promising options for reusing this industrial waste. This paper presents a short overview of the production of unique high performance glass-ceramics using coal fly ash as a raw material. A detailed description of the methodologies for the synthesis of glass-ceramics from coal fly ash and the principal crystal phases, corresponding property and possible usage of those materials are introduced. Investigations revealed that converting coal fly ash into high performance glass-ceramic materials is a promising new approach to improve the utilization of this industrial by-product. This conversion not only alleviates the problems with disposal but also converts a waste material into a high value-added marketable commodity.
In order to realize the effective jointing of tungsten and Cu Cr Zr alloys manufactured for plasma facing components(PFCs), explosive welding is employed for its some unique advantages. Different welding characteristics were investigated in this study. The interfacial waveform of the welded plates changed periodically from flat-wavelet to a large wave and finally to a stable wave, which began with the detonation point. The bonding strength of the specimens is higher than 32.9 MPa. Welding hardening and the formation of microcracks occurred at the interface zone. The results demonstrate that the joining reliabilities need to be improved in order to meet the need of applications involving the use of explosive welding to fabricate tungsten-based PFCs.
Congxiao SunShuming WangWenhao GuoWeiping ShenChangchun Ge
In a fusion reactor, plasma-facing components(PFCs) will suffer severe thermal shock; behavior and performance of PFCs under high heat flux(HHF) loads are of major importance for the long-term stable operation of the reactor. This work investigates the thermo-mechanical behaviors of tungsten armor under high heat loads by the method of finite element modeling and simulating. The temperature distribution and corresponding thermal stress changing rule under different HHF are analyzed and deduced. The Manson–Coffin equation is employed to evaluate the fatigue lifetime(cyclic times of HHF loading) of W-armored first wall under cyclic HHF load. The results are useful for the formulation design and structural optimization of tungsten-armored PFCs for the future demonstration fusion reactor and China fusion experimental thermal reactor.
Shu-Ming WangJiang-Shan LiYan-Xin WangXiao-Fang ZhangQing Ye
In a fusion reactor,due to high heat flux(HHF) loads,the plasma facing components(PFCs) will suffer severe thermal shock.In this paper,the temperature distribution and thermal-stress field of tungsten armor under HHF loads were investigated by the method of finite element modeling and simulating.The orthogonal experiment and range analysis were employed to compare the influence degree of four representative factors:steady-state heat flux;thickness of tungsten armor;inner diameter of cooling tube and the coefficient of convection heat transfer(CCHF) of cooling water,on thermal shock behavior tungsten mock-ups,and then get an optimization model to conduct the transient heat flux experiment.The final simulation results indicated that the steady-state heat flux and the thickness of W armor are the main influential factors for the maximum temperature of mock-ups.Furthermore,the influence of transient thermal shock all mainly concentrates on the shallow surface layer of tungsten(about 500 μm) under different transient heat flux(duration 0.5 ms).The results are useful for the structural design and the optimization of tungsten based plasma facing materials for the demonstration reactor(DEMO) or other future reactors.
Yanxin WangShuming WangQing YeQingzhi YanChangchun Ge
A series of Na20-CaO-SiO2 glass ceramics containing different content of Nd3+ ions were prepared by the method of high temperature melting and subsequent crystallization. The absorption, excitation and emis- sion spectra of these glass ceramics were investigated; effects of Nd3+ content and crystallization behavior on the laser properties of this material had been studied. The results show that the emission bands origi- nating from the 4F3/2 state of Nd3+ were firstly enhanced with the increase of the Nd2O3 doping content and the crystallinity degree, and then decreased with more doping content and deepened crystalliza- tion. The possible reasons of this phenomenon were analyzed. Research will be favored to promote the development of glass ceramics laser materials for space solar energy.
Shuming WangFenghua KuangQing YeYanxin WangMinghui TangChangchun Ge
Tungsten is one of the best candidates for plasma-facing components in fusion reactors owing to its unique properties. But disadvantages such as its brittleness and high ductile-to-brittle transition temperature have restricted its fusion energy application. Single-walled carbon nanotubes (SWCNTs) have the potential to be used as reinforcements due to their excellent mechanical properties. A new method of modifying the properties of tungsten by doping with SWCNTs was introduced. An efficient way of dispersing SWCNTs into the tungsten matrix with strong interfaces by heterocoagulation and ultrasonication was employed, and hot explosive compaction (HEC) technology was selected to compact and sinter the composite powders. The sintering properties, microstructure, densification effect, thermal conductivity, hardness and fracture toughness of the obtained SWCNTs/W bulk samples were tested, and compared with pure tungsten. The influences of SWCNTs on these properties and the main toughening mechanism of SWCNTs in a tungsten matrix were discussed.
A characteristic CaO-Al2O3-SiO2 based foam ceramic was prepared by melt-foaming with solid wastes as main raw materials.The similarity to sandwich hole wall microstructure of this novel thermal insulating material was presented and the relationships between this unique microstructure and porosity,density,thermal conductivity and strength were discussed.Comparing the measured and theoretical values with that of the traditional foam ceramic,it can be found that,for the matching of fine skeleton with hole wall,this original sandwich structure can reduce thermal conductivity and increase flexural strength effectively.