Tungsten doped indium oxide (IWO) thin films were deposited on glass substrate at room temperature by radio frequency reactive magnetron sputtering. Chemical states analysis was carried out, indicating that valence states of element W in the films were W4+ and W6+. The effects of sputtering power and film thickness on the surface morphology, optical and electrical properties of IWO thin films were investigated. The IWO thin films had high transmittance in near infrared (NIR) spectral range. The resistivity, carrier mobility and carrier concentration owned their respective optimum values as sputtering power and thickness changed. The asdeposited IWO film with the minimum resistivity of 3.23 × 10^-4 Ω cm was obtained at a sputtering power of 50 W, with carrier mobility of 27.1 cm2 V-1 s-1, carrier concentration of 7.15 × 10^20 cm-3, average transmittance about 80% in visible region and above 75% in NIR region. It may meet the application requirement of high conductivity and transparency in NIR wavelength region.
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.