This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time- varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. A unified model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced, which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator, chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory network (SCRN). First, the definition of the tracking control is given. Second, the H∞ performance analysis of the closed-loop system including this unified model, reference model, and state feedback controller is presented. Then criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system tracks the given reference signal in the H∞ sense. The reference model adopted here is modified to be more flexible. A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a CSTR system is provided to demonstrate the effectiveness of the established control laws.
We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli(SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets.Since most clutter measurements do not participate in the update step, the computing time is reduced significantly.Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.