The flotation and surface interaction of rutile with nonyl hydroxamic acid were investigated in this work. The results show that the adsorption density and flotation recovery of rutile have similar tendency, especially the maximum recovery and adsorption occur at pH about 7.5. In terms of Fourier transform infrared(FTIR) spectroscopic analysis, chemical adsorption is identified on the surface of rutile, where a chelate of O,O-five-membered rings with Ti^4+ on the surface of rutile may form. Adsorption measurements, Zeta potential test, IR spectrum analyses, and solution chemistry calculations illustrate that the adsorption on the rutile surface involves both physical and chemical adsorption, while chemical adsorption is dominant.
Jun WangHong-Wei ChengHong-Bo ZhaoWen-Qing QinGuan-Zhou Qiu