In this paper, we consider spatial-temporal correlation functions of the turbulent velocities. With numerical simulations on the Gledzer-Ohkitani-Yamada (GOY) shell model, we show that the correlation function decays exponentially. The advecting velocity field is regarded as a colored noise field, which is spatially and temporally correlative. For comparison, we are also given the scaling exponents of passive scalars obtained by the Gaussian random velocity field, the multi-dimensional normal velocity field and the She-Leveque velocity field, introduced by She, et al. We observe that extended self-similarity sealing exponents H(p)/H(2) of passive scalar obtained by the colored noise field are more anomalous than those obtained by the other three velocity fields.