The characteristics of the geopotential coefficient J2 in different periods are analyzed using satellite laser ranging data spanning the last 27 years.The satellites used in the analysis are Lageos1 and Lageos2.The variations in J2 are obtained by determining the dynamic orbit.The results show that there are strong seasonal and long-term variations.For different data spans,the seasonal variations agree well in terms of both amplitude and phase.Using all the data,the amplitude and phase of the annual term are 2.5 10-10 and 127°,respectively,while the amplitude and phase of the semiannual term are 0.94 10-10 and 213°,respectively.In the case of long-term variation,the secular variation in J2(J2) is-2.2 10-11 a-1 from 1984 to 2010.J2 differs for the different periods because of interannual variations,such as the "1998 anomaly".Another anomaly may have taken place during 2007-2010.Although the cause of the anomaly is unknown,it is an important observational constraint on the shape of the Earth.
With the successful launch and official commissioning of China's first dynamic ocean environment satellite Haiyang-2(HY-2),China's capabilities for oceanic environment monitoring and oceanic resource detecting have been further improved and enhanced.Precise tracking and orbit determination are not only key technical concerns in the ocean dynamic environment satellite project but also necessary conditions for carrying out related oceanic science research using observational data obtained using spaceborne instruments including radar altimeter.In this study,the current available status of international satellite laser ranging(SLR) monitoring on HY-2 was introduced.Six-months of SLR data from HY-2 were processed to obtain precise satellite orbit information using the dynamic orbit determination method.We carried out a detailed assessment of the SLR orbit accuracy by internal evaluation,comparisons with the orbit derived by the French Doppler orbitography and radio-positioning integrated by satellite(DORIS) system,and station-satellite distance validation.These assessments indicate that the three-dimensional orbital accuracy of HY-2 is about 12.5 cm,and the radial accuracy is better than 3 cm.It provides a good example of the application of international SLR monitoring and precise orbit determination in China's earth observation satellite project.