Hydrophobic nanochannel plays a significant role in many physical, biological, and geological phenomena and ex- hibits impressive applications due to both its ubiquitous distribution and great ability to transport hydrophobic molecules, including various oils and gases. Based on theoretical modeling, we herein reveal that the amphipathic Janus nanoparticles have a large probability to self-assemble into uninterrupted hydrophobic nanochannels inside the aqueous nano-space, al- though there are large portions of the Janus nanoparticles to be hydrophilic. The key to this observation is the attractions between the hydrophobic regimes on neighboring amphipathic Janus particles through hydrophobic interaction in aqueous nano-space. More surprisingly, the permeation efficiency of hydrophobic molecules through the uninterrupted hydrophobic channel in Janus particles aggregate is even higher than that in the aggregate of hydrophobic particles. We note that the proposed amphipathic Janus particles can be transported to the appropriate positions by the water since the hydrophilic regimes still remain a strong particle-water interaction. We also note that most natural subsurface rocks are not completely hydrophobic or hydrophilic but have complex surfaces with inhomogeneous wetting property. Our work therefore provides a detailed molecular level understanding of the formation of underground strata as well as the new insight for constructing the artificial hydrophobic channels for various applications, such as the design of proppants to enhance the recovery of the unconventional oil/gas.
Gang FangNan ShengTan JinYousheng XuHai SunJun YaoWei ZhuangHaiping Fang
Using molecular dynamics simulations,we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval,instead of the generally expected random walk.This unexpected dynamic behavior has a similarity to that of active matters,such as swimming bacteria,cells,or even fish,but is of a different physical origin.The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation.Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.
Nan ShengYuSong TuPan GuoRongZheng WanZuoWei WangHaiPing Fang
Using molecular dynamics simulations, we show that free diffusion of a nanoscale particle (molecule) with asymmetric structure critically depends on the orientation in a finite timescale of picoseconds to nanoseconds. In a timescale of ~100 ps, there are ~10% more possibilities for the particle moving along the initial orientation than moving opposite to the orientation; and the diffusion distances of the particle reach ~1 nm. We find that the key to this observation is the orientation-dependence of the damping force to the moving of the nanoscale particle and a finite time is required to regulate the particle orientation. This finding extends the work of Einstein to nano-world beyond random Brownian motion, thus will have a critical role in the understanding of the nanoscale world.