Porous tetragonal BaTiO 3 ceramic was successfully prepared by a combination of hydrothermal and low-temperature-sintering method.The hollow TiO2@BaCO 3 as the sintering precursor was synthesized via a simple hydrothermal method,and then porous BaTiO 3 was generated by calcining the hollow TiO2@BaCO 3 precursor at 900 ℃ without additive.The hollow TiO2@BaCO 3 structure plays two important roles in the preparing of the porous BaTiO 3 ceramic.First,the TiO2@BaCO 3 hollow structure provides high surface areas and increases the contact points between BaCO 3 and TiO2,which can reduce the sintering temperature of the BaTiO 3 ceramic.Second,the cavity of the ordered arranged TiO2@BaCO 3 hollow sphere shows important influence on the porous structure,and the pore size of the as-prepared porous BaTiO 3 ceramic can be tuned from several nanometers to hundreds nanomters by changing the sintering temperature.The formation mechanism of the porous BaTiO 3 ceramic was proposed.
LI YangLIU HuLIU FaJiaLI ChaoRongCHEN BenYongDONG WenJun
Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides.
Manipulation of the photoluminescence spectra of light-emitting materials doped in three-dimensional (3D) inverse opal photonic crystals is investigated. Quinacrine dihydrochloride molecules doped highly ordered SiO2 inverse opal is successfully synthesized by co-assembly combined with double-substrate vertical infiltrate method. The quinacrine dihydrochloride-doped and-undoped SiO2 inverse opals each exhibit an apparent photonic band gap (PBG) in the visible light region. Significant suppression of the emission is observed when the PBG is overlapped with the quinacrine dihydrochloride emission bands. The mechanism of suppression effect of PBG in inverse opal on the fluorescence intensity of quinacrine dihydrochloride molecules is studied.
The relationship between colloidal particle transfer and the quality of colloidal photonic crystal(CPC) is investigated by comparing colloidal particle self-assembling under the vertical channel(VC) and horizontal channel(HC) conditions.Both the theoretical analyses and the experimental measurements indicate that crystal quality depends on the stability of mass transfer.For the VC,colloidal particle transfer takes place in a stable laminar flow,which is conducive to forming high-quality crystal.In contrast,it happens in an unstable turbulent flow for the HC.Crystals with cracks and an uneven surface formed under the HC condition can be seen from the images of a field emission scanning electron microscope(SEM) and a three-dimensional(3D) laser scanning microscope(LSM),respectively.