Two types of Sb-doped SnO2 films on titanium substrate were prepared by the combination of electro-deposition and dip-coating (Ti/SnO2-Sb2O4/SnO2-Sb2O4) and single dip-coating (Ti/SnO2-Sb2O4), respectively. The surface morphology and crystalline structure of both film electrodes were characterized using X-ray diffractometry(XRD) and scanning electron microscopy(SEM). XRD spectra indicate that the rutile SnO2 forms in two films and a TiO2 crystallite exists only in Ti/SnO2-Sb2O4 electrode. SEM images show that the surface morphology of two films is typically cracked-mud structure. The photooxidation experiment was proceeded to further confirm the two electrode activity. The results show that the photoelectrocatalytic degradation efficiency of Ti/SnO2-Sb2O4 electrode with sub-layer is higher than that of simple Ti/SnO2-Sb2O4 electrode using phenol as a model organic pollutant. The Ti/SnO2-Sb2O4/SnO2-Sb2O4 photoanode has a better photoelectrochemical performance than Ti/SnO2-Sb2O4 photoanode for the removal of organic pollutants from water.
TiO2/C particles as photocatalyst were prepared by dipping TiO2 suspension solution with activated carbon and were applied in the photocatalytic-electrocatalytic degradation of phenol, the Ti/SnO2+Sb2O3/PbO2 electrode and oxygen diffusion electrode were used as anode and cathode respectively, and a 250 W ultraviolet lamp (365 nm) as side light source. The SEM results of TiO2/C and Ti/SnO2+Sb2O3/PbO2 anode indicated that the TiO2 on carbon particles was uniform and PbO2 film on the surface of anode was in cauliflower form, the XRD result of oxygen diffusion electrode showed that only crystalline graphite was found. The influential parameters of degradation process such as applied cell voltage (E), initial concentration of phenol (C0), amount of TiO2 catalyst and air flow rate (v) were discussed. Under the following experimental conditions of C0=50 mg/L, pH=6, E=2 V, TiO2 0.98 mg/mL, v=382.2 mL/min, and light intensity I=10.5 mW/cm2, phenol could be entirely degraded, and about 89% of total organic carbon (TOC) was removed after 3 h degradation.
The nano-TiO2 doped with Er3+ were prepared from Ti(OC4H9)4 by sol-gel method,and the effect of Er3+ dopant on microstructure and photocatalytic activity of nano-TiO2 was studied. The phase composition and crystallite sizes of Er3+-doped TiO2 samples were analyzed by X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The photocatalytic activity of Er3+-doped TiO2 was investigated at different doping concentrations and different heat treatment temperatures in the photocatalytic degradation of phenol with 365 nm wavelength ultraviolet light irradiation. The results show that both the anatase phase and rutile phase are formed in doped TiO2. Er3+ doping hinders the crystal transformation and makes the TiO2 crystallite size change smaller as well as increases the photocatalytic activity of TiO2 greatly. When Er3+ doping concentration is 1.2%(mass fraction) and the heat treatment temperature is 700 ℃,the photocatalytic activity of Er3+-doped TiO2 is favorite in the experimental range. The photocatalytic activity is enhanced by about 18% compared with that of the pure TiO2 and almost approaches the photocatalytic activity of P25-TiO2.
Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffuse reflectance spectra (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of phenol in water. The results of XRD, TEM, and DRS show that pure TiO2 and Ce-doped TiO2 powder crystallines are a mixture of anatase and rutile ; the doping can retard the development of the grain size of TiO2 and decrease the diameter of TiO2 from more than 20 nm of pure TiO2 to about 10 nm; the doped TiO2 can improve the light absorption of TiO2 and suitable doping content tends to move the DRS spectrum of TiO2 towards visible light, but too much doping is not good for the light absorption ability. The results of the photocatalytic experiments show that doping with Ce content of 0.08% -0.4% can increase the photocatalytic activity of TiO2; however, doping with Ce content of 0.5% -2.5% can significantly decrease the photocatalytic activity of TiO2. The favorite doping content is 0.4% in the range of our experiments.