The amino acids are necessarily nutritious components, their diffusions in body fluid and blood that belong to typical non-Newtonian fluid are of virtual importance to control the diffusive process and help clinical treatment. In this article, a holographic interferometer has been adopted to measure the diffusivity of amino acids in non-Newtonian fluid with the use of real-time holographic interference technique. In order to prove the reliability of the experimental instrument, the diffusivities of sucrose aqueous solution at 298.15K were determined. The meas- ured result displays a satisfactory accuracy of the apparatus used. Furthermore, the diffusion coefficients of glynine, L-serine, L-threonine and L-valine in polyacrylamide (PAM) aqueous solution at 298.15K were measured, respec- tively. The experimental data were fitted by a newly proposed correlation equation based on Li's predictive model. The calculating results by the present model are at considerably good agreement with experimental values, and the maximum average deviation is only 0.5%.
Based on the comprehensive forces balance model, a modified model of the formation of a single bub-ble in non-Newtonian fluid under constant flowrate was developed by taking account of the effect of the ingoing gas through orifice as well as its variation on the radial expansion of bubble. The modified model involves the radial expansion equation of bubble surface and the forces balance equation in vertical direction of the bubble respec-tively. The shape variation of bubbles formed in polyacrylamide (PAM) aqueous solutions under various conditions was predicted numerically. The practical formation of bubbles was real-time visualized and recorded by a CCD camera and a computer by means of a special laser image measurement system. Results show that the predicted shapes of the bubbles by the present model agree well with experimental observation.
The amino acids are necessarily nutritious components, their diffusions in body fluid and blood that be- long to typical non-Newtonian fluid are of virtual importance to control the diffusive process and help clinical treatment. In this article, a holographic interferometer has been adopted to measure the diffusivity of amino acids in non-Newtonian fluid with the use of real-time holographic interference technique. In order to prove the reliability of the experimental instrument, the diffusivities of sucrose aqueous solution at 298.15K were determined. The meas- ured result displays a satisfactory accuracy of the apparatus used. Furthermore, the diffusion coefficients of glynine, L-serine, L-threonine and L-valine in polyacrylamide (PAM) aqueous solution at 298.15K were measured, respec- tively. The experimental data were fitted by a newly proposed correlation equation based on Li’s predictive model. The calculating results by the present model are at considerably good agreement with experimental values, and the maximum average deviation is only 0.5%.