In this paper we investigate the formations and morphological stabilities of Co-silicide fihns using 1-8-nm thick Co layers sputter-deposited on silicon (100) substrates. These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450 ℃ to 850 ℃. For a Co layer with a thickness no larger than i nm, epitaxially aligned CoSi2 films readily grow on silicon (100) substrate and exhibit good morphological stabilities up to 600 ℃. For a Co layer thicker than 1 nm, polycrystalline CoSi and CoSi2 films are observed. The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon (100) substrate. The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.
In this paper, two microwave irradiation methods:(i) liquid-phase microwave irradiation(MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and(ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis,and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygencontaining functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
We report Pt deposition on a Si substrate by means of atomic layer deposition(ALD) using(methylcyclopentadienyl) trimethylplatinum(CH_3C_5H_4Pt(CH_3)_3) and O_2.Silicon substrates with both HF-last and oxidelast surface treatments are employed to investigate the influence of surface preparation on Pt-ALD.A significantly longer incubation time and less homogeneity are observed for Pt growth on the HF-last substrate compared to the oxide-last substrate.An interfacial oxide layer at the Pt-Si interface is found inevitable even with HF treatment of the Si substrate immediately prior to ALD processing.A plausible explanation to the observed difference of Pt-ALD is discussed.