Soluble epoxide hydrolase(sEH) is related to arachidonic acid cascade and is over-expressed in a variety of diseases, making sEH an attractive target for the treatment of pain as well as inflammatory-related diseases. A new series of memantyl urea derivatives as potent sEH inhibitors was obtained using our previous reported compound 4 as lead compound. A preferential modification of piperidinyl to 3-carbamoyl piperidinyl was identified for this series via structure-based rational drug design. Compound A20 exhibited moderate percentage plasma protein binding(88.6%) and better metabolic stability in vitro. After oral administration, the bioavailability of A20 was 28.6%. Acute toxicity test showed that A20 was well tolerated and there was no adverse event encountered at dose of 6.0 g/kg. Inhibitor A20 also displayed robust analgesic effect in vivo and dose-dependently attenuated neuropathic pain in rat model induced by spared nerve injury, which was better than gabapentin and sEH inhibitor(±)-EC-5026. In one word, the oral administration of A20 significantly alleviated pain and improved the health status of the rats, demonstrating that A20 was a promising candidate to be further evaluated for the treatment of neuropathic pain.
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity.However,the inherent properties of these drugs,such as large molecular weight,poor stability,and conformational flexibility,make them difficult to be formulated and delivered.Injection is the primary route for clinical administration of protein and peptide drugs,which usually leads to poor patient’s compliance.As a portable,minimally invasive device,microneedles(MNs)can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation.In this review,we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs.Emphasis was given to the latest development in representative MNs design and fabrication.We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery,especially in the field of infectious disease,diabetes,cancer,and other disease therapy.Finally,the current status of clinical translation and a perspective on future development are also provided.
Considering that photodynamic therapy(PDT)-induced oxygen consumption and microvascular damage could exacerbate hypoxia to drive more glycolysis and angiogenesis, a novel approach to potentiate PDT and overcome the resistances of hypoxia is avidly needed. Herein, morpholine-modified PEGylated bilirubin was proposed to co-deliver chlorin e6, a photosensitizer, and diclofenac(Dc). In acidic milieu, the presence of morpholine could enable the nanocarriers to selectively accumulate in tumor cells, while PDT-generated reactive oxidative species(ROS) resulted in the collapse of bilirubin nanoparticles and rapid release of Dc. Combining with Dc showed a higher rate of apoptosis over PDT alone and simultaneously triggered a domino effect, including blocking the activity and expression of lactate dehydrogenase A(LDHA), interfering with lactate secretion, suppressing the activation of various angiogenic factors and thus obviating hypoxia-induced resistance-glycolysis and angiogenesis. In addition, inhibition of hypoxia-inducible factor-1a(HIF-1a) by Dc alleviated hypoxia-induced resistance. This study offered a sequentially responsive platform to achieve sufficient tumor enrichment, on-demand drug release and superior anti-tumor outcomes in vitro and in vivo.
Yang ZhouFan TongWeilong GuSiqin HeXiaotong YangJiamei LiYue-Dong GaoHuile Gao
Background:Hydrogen bonding interaction was considered to play a critical role in controlling drug release from transdermal patch.However,the quantitative evaluation of hydrogen bonding strength between drug and polar functional group was rarely reported,and the relationship between hydrogen bonding strength and controlled release capacity of pressure sensitive adhesive(PSA)was not well understood.The present study shed light on this relationship.Methods:Acrylate PSAs with amide group were synthesized by a free radical-initiated solution polymerization.Six drugs,i.e.,etodolac,ketoprofen,gemfibrozil,zolmitriptan,propranolol and lidocaine,were selected as model drugs.In vitro drug release and skin permeation experiments and in vivo pharmacokinetic experiment were performed.Partial correlation analysis,fourier-transform infrared spectroscopy and molecular simulation were conducted to provide molecular details of drug-PSA interactions.Mechanical test,rheology study,and modulated differential scanning calorimetry study were performed to scrutinize the free volume and molecular mobility of PSAs.Results:Release rate of all six drugs from amide PSAs decreased with the increase of amide group concentrations;however,only zolmitriptan and propranolol showed decreased skin permeation rate.It was found that drug release was controlled by amide group through hydrogen bonding,and controlled release extent was positively correlated with hydrogen bonding strength.Conclusion:From these results,we concluded that drugs with strong hydrogen bond forming ability and high skin permeation were suitable to use amide PSAs to regulate their release rate from patch.
Transporters are traditionally considered to transport small molecules rather than large-sized nanoparticles due to their small pores.In this study,we demonstrate that the upregulated intestinal transporter(PCFT),which reaches a maximum of 12.3-fold expression in the intestinal epithelial cells of diabetic rats,mediates the uptake of the folic acid-grafted nanoparticles(FNP).Specifically,the upregulated PCFT could exert its function to mediate the endocytosis of FNP and efficiently stimulate the traverse of FNP across enterocytes by the lysosome-evading pathway,Golgi-targeting pathway and basolateral exocytosis,featuring a high oral insulin bioavailability of 14.4%in the diabetic rats.Conversely,in cells with relatively low PCFT expression,the positive surface charge contributes to the cellular uptake of FNP,and FNP are mainly degraded in the lysosomes.Overall,we emphasize that the upregulated intestinal transporters could direct the uptake of ligand-modified nanoparticles by mediating the endocytosis and intracellular trafficking of ligand-modified nanoparticles via the transporter-mediated pathway.This study may also theoretically provide insightful guidelines for the rational design of transporter-targeted nanoparticles to achieve efficient drug delivery in diverse diseases.
The development of nanomedicine has recently achieved several breakthroughs in the field of cancer treatment;however,biocompatibility and targeted penetration of these nanomaterials remain as limitations,which lead to serious side effects and significantly narrow the scope of their application.The self-assembly of intermediate filaments with arginine-glycine-aspartate(RGD)peptide(RGDIFP)was triggered by the hydrophobic cationic molecule 7-amino actinomycin D(7-AAD)to synthesize a bifunctional nanoparticle that could serve as a fluorescent imaging probe to visualize tumor treatment.The designed RGD-IFP peptide possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method.This fluorescent nanoprobe with RGD peptide could be targeted for delivery into tumor cells and released in acidic environments such as endosomes/lysosomes,ultimately inducing cytotoxicity by arresting tumor cell cycling with inserted DNA.It is noteworthy that the RGD-IFP/7-AAD nanoprobe tail-vein injection approach demonstrated not only high tumor-targeted imaging potential,but also potent antitumor therapeutic effects in vivo.The proposed strategy may be used in peptide-driven bifunctional nanoparticles for precise imaging and cancer therapy.
Han XiaoRui ZhangXiaobo FanXinglu JiangMingyuan ZouXuejiao YanHaiping HaoGuoqiu Wu
This article proposes a novel nonlinear network code in the GF(2^m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2^m). Three relevant rules for selecting discussed, and the relationship between the power parameter m proper parameters for the proposed nonlinear network code are and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.
Tumor-associated carbohydrate antigens(TACAs) are attractive targets for vaccine development. In this context, we described a strategy combining artificial TACA and glycoengineering for cancer vaccine development. A 2,4-ditrophenyl(DNP)-modified GM3 intermediate was synthesized chemoenzymatically and conjugated to keyhole limpet hemocyanin(KLH), and the resulting bioconjugate was tested for its potential as a vaccine candidate. Mice immunological studies revealed that the DNP-modified GM3(GM3-NHDNP) analog elicited strong and rapid immune responses by recruiting anti-DNP antibodies to facilitate the targeted delivery of the vaccine construct to antigen processing cells(APCs). Moreover, the endogenously produced anti-DNP antibodies, together with the elicited antibodies against GM3-NHDNP, may synergistically promote tumor binding and cancer cell death when the cancer cell surfaces are glycoengineered to express the GM3-NHDNP antigen.
Han LinHaofei HongLipeng FengJie ShiZhifang ZhouZhimeng Wu
To the Editor:ADP-ribosylation factor 1 (ARF1) plays a critical role in regulating vesicle formation and transport1. The dysregulation of ARF1 expression and/or activity is involved in many human cancers, such as breast cancer2,3. Therefore, ARF1 is one of the promising therapeutic targets for cancer treatment.
The product of the ∧0/b (-B/0) differential production cross-section and the branching fraction of the decay ∧0/b→ J/ψ pK-(-B/0→ J/ψ-K*(892)0)is measured as a function of the beauty hadron transverse momentum, PT, and rapidity, y. The kinematic region of the measurements is pT〈20 GeV/c and 2.0 〈g〈4.5.The measurements use a data sample corresponding to an integrated luminosity of 3fb-1 collected by the LHCb detector in pp collisions at centre-of-mass energies √s=7 TeV in 2011 and √s=8 TeV in 2012. Based on previous LHCb results of the fragmentation fraction ratio,f∧0/b/fd,the branching fraction of the decay ∧0/b→ J/ψ pK-is measured to be B(∧0/b→ J/ψ pK-)=(3.17±0.04±0.07±0.34+0.45/-0.28)×10-4,where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay -B/0 →J/ψ-K*(892)0,and the fourth is due to the knowledge of f∧0/b/fd.The sum of the asymmetries in the production and decay between ∧0/b and ∧0/bis also measured as a function of PT and y.The previously published branching fraction of ∧0/b→ J/ψ pπ-,relative to that of ∧0/b→ J/ψ pK-,is updated. The branching fractions of ∧0/b→P+c(→ J/ψp)K-are determined.