国家自然科学基金(31202034)
- 作品数:4 被引量:41H指数:3
- 相关作者:张世羊李谷陶玲李晓莉张少辉更多>>
- 相关机构:中国水产科学研究院长江水产研究所中国水产科学研究院淡水渔业研究中心武汉理工大学更多>>
- 发文基金:国家自然科学基金中央级公益性科研院所基本科研业务费专项中央高校基本科研业务费专项资金更多>>
- 相关领域:农业科学环境科学与工程更多>>
- 地下水用于循环水养殖模式的潜质与风险被引量:1
- 2013年
- 随着水资源危机的日益严重,地下水用于水产养殖及相应的循环水养殖模式开发将成为水产养殖领域的一个重要发展方向。然而目前中国地下水的重金属和有机物污染相当严重,利用地下水养殖可能会带来质量安全方面的风险。本文概述了地下水在水产养殖中的应用现状;详述了循环水养殖在去除重金属和有机污染物方面的优势和不足;预测已污染的地下水在用于循环水养殖后,将会产生一定的生物蓄积风险;推断地下水中主要污染物(尤其是重金属)在循环水养殖系统中的运移和归宿、系统净化单元对污染物去除的贡献以及污染物对水生态系统的影响,将是未来地下水在水产养殖中应用的重点研究内容。
- 张世羊李谷
- 关键词:水产养殖地下水循环水养殖污染物去除
- 不同增氧方式对精养池塘溶氧的影响被引量:21
- 2013年
- 当前对于在精养池塘中如何配制和合理使用不同机械增氧方式缺乏系统的比较研究。该文为了探讨高温季节晴好天气不同机械增氧方式对池塘溶氧全天调控的影响,试验设计如下:于夏天高温季节集中对精养池塘应用3种不同增氧方式,在晴好天气的白天和夜间进行增氧效果试验。结果发现:无论增氧机开启与否,池塘的溶氧都存在明显的昼夜起伏,且在午后出现峰值。增氧机的开启增强了上下水层交换,削减了氧差,减少了上层溶氧的逸出损失,提升了下层水体的低溶氧水平。池塘上层溶氧起伏程度大于下层,下层溶氧变化滞后于上层(下层溶氧出现峰值落后于上层约2~5h),且这种滞后性为增氧机运行所削弱。夜间增氧能向池塘补充溶氧,但仍不足以弥补鱼类和浮游生物的代谢、微生物的生长及有机物的氧化分解造成的溶氧损耗。单从机械增氧能力来看,叶轮式>微孔式>耕水机。综合分析节能和增氧效果,在精养池塘养殖环境下,白天开机增氧选择耕水机较为合适,而夜间应急增氧选择叶轮式更可取。试验通过对不同机械增氧方式增氧效果和能耗的系统比较,为合理选择和使用增氧方式提供了一定的参考价值。
- 张世羊李谷陶玲李晓莉
- 关键词:水产养殖精养池塘增氧方式增氧能力溶氧
- 4种不同工况生物滤池净化效能与微生物特性分析被引量:11
- 2018年
- 为了从微生物层面探讨曝气、挂膜周期、池形(或流态)改变对生物滤池净化效率的影响,试验设计了4种不同工况的生物滤池,即MAVF、NAVF、NVF、BHF,其中前三者为垂直流滤池,最后一种为折流式水平流滤池. 4组滤池框架和滤料相同,MAVF与BHF串联,且于试验前期运行1 a,NAVF及NVF为新启用滤池. 4组滤池采取同步序批式运行,其中MAVF、NAVF进行间歇曝气,其余两组未曝气.于新启用滤池挂膜阶段,对4组滤池同步处理生活污水的净化效率进行持续监测,并于挂膜结束后采集基质样品分析滤池微生物群落结构特征.结果表明,3组垂直流滤池的净化效率显著高于水平流滤池;曝气显著提高了滤池的净化效能,但与滤池微生物成熟度相比,前者的影响更弱. 4组滤池内均无明显的硝氮、亚硝氮积累,反硝化进行得很彻底. 16S r DNA高通量测序分析表明,4组滤池的多样性指数高低是BHF> MAVF> NAVF> NVF,表明滤池愈成熟,多样性指数愈高. 4组滤池内微生物以兼性异养菌为主,且以异养反硝化脱氮菌最为丰富. NVF及BHF滤池内发生了异养硝化过程,曝气促进了滤池内好氧硝化菌的富集. 4组滤池内均未检测到好氧聚磷菌,磷的去除以反硝化聚磷为主.试验工况下,滤池对总氮的去除率不高主要归结于滤池内尚未富集到自养硝化菌或其丰度不高,后者导致滤池的氨氧化能力有限,进而影响总氮去除.以上研究结果表明,不同工况的调整会影响到生物滤池的氧化还原状态和功能菌富集,进而最终影响净化效率.
- 江肖良李孟张少辉张世羊
- 关键词:生物滤池微生物群落结构高通量测序
- 曝气对垂直流湿地处理水产养殖废水脱氮的影响被引量:8
- 2015年
- 人工湿地作为一种有效的污水处理技术,现已被逐渐拓展到水产养殖业中。鉴于其与养殖竞争有限土地资源的弊端,如何构建节地高效型湿地成为未来研究的重点。曝气增氧是强化潜流湿地净化效能的重要措施之一,但是关于曝气强度以及净化效率与影响因素的关系仍缺乏深入系统的研究。为此,该文设计构建了7组不同要素组合的垂直流湿地小试系统,同步或分阶段探讨了曝气强化对垂直流湿地脱氮的影响。研究结果表明,无论曝气与否,构建的7组湿地系统于试验运行工况下都存在明显的硝化过程,且空气复氧和植物根系泌氧足以弥补硝化作用耗氧量。曝气增氧进一步强化了湿地内部的矿化和硝化过程;鉴于养殖废水不缺乏碳源(该研究各组湿地进水碳氮比在28.4~30.6之间),湿地内部的反硝化几率增大,导致曝气后总氮的去除效率提高。但是曝气条件下过高的溶解氧又会进一步抑制反硝化过程,从而也会导致系统总氮去除速率的下降。因此,对垂直流湿地而言,曝气强度不是愈高愈好。为了获得更高的脱氮效率,建议可以通过延长水力停留时间或者在垂直流湿地尾部增设水平潜流湿地来补充反硝化过程,进而提高系统对总氮的去除效果。
- 张世羊常军军高毛林李谷
- 关键词:水产养殖脱氮废水人工湿地曝气硝化-反硝化