Two series of novel cholesteryl-containing H-bonded liquid crystals were prepared through facile self-assembly between cholesteryl isonicotinate (proton acceptor) exhibiting a monotropic cholesteric phase, and the 4-alkoxy-benzoic acid or 4-alkoxy cinnamic acid (proton donor). It was found that the increase of the conjugate length as well as the terminal length can contribute to enhance the interaction of molecules and thus significantly influenced the thermal behaviors of H-bonded LCs. The cholesteric reflection spectra of the induced mesogenic complexes were located in the visible region with the color tuneable thermo-sensitivity, which could be used for display application.
Wan Li He Tao Liu Zhou Yang Dong Yu Zhao Wei Huang Hui Cao Guo Jie Wang Huai Yang
Two series of novel tolane-type liquid crystals (LCs) comprising of hydrogen-bonded organic acids were synthesized. The formation of dimerized H-bond LCs was confirmed by IR spectroscopy, and mesomorphic properties of the LCs were investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). It was found that the end groups of the liquid crystals as well as the unsaturated rigid core had effect on the mesomorphic properties.
Dong Yu Zhao Qing Yong Meng Xiao Peng Cui Huai Yang