Interannual variability of the Antarctic Circumpolar Current (ACC) strength is studied in stream-coordinate with twenty-year Absolute Dynamic Topography data from satellite altimetry. The stream-coordinate projection method separates the ACC from adjacent subtropical and subpolar gyres, enabling consideration of the zonal asymmetry of the ACC rather than assuming that the ACC is a purely zonal flow. It is shown that the ACC strength has large interannual variations with two recent peaks around 2000 and 2009. The interannual variability appears mainly in the Indo-Pacific sector of the Southern Ocean and the strongest signal is located south of Australia. The intensification of the westerly wind in 1998 and 2008 appears to cause the strengthening of the ACC via baroclinic processes.
Recent discovery of low-dimensional coherent structure in oceanic currents along with a new merged altimeter product called Absolute Dynamic Topography (ADT) makes it possible to derive subsurface ocean information from satellite remote sensing data.An altimetric geostrophic empirical mode (η-GEM) is developed in this study by projecting hydrographic transects onto the ADT sea surface height coordinate,based on which the four-dimensional thermohaline and velocity structures of oceanic currents are reconstructed from satellite surface observations.In the WOCE/SR3 area,the η-GEM fields capture more than 95% of the total thermal variance.The GEM-derived flow has equivalent-barotropic structure and represents the velocity profile better than traditional dynamic modes.Comparison with mooring observations also demonstrates that the η-GEM provides good estimates of the deep thermohaline fields.
A streamfunction EOF method is applied to a time series of hydrographic sections in the Southern Ocean south of Australia to study water mass variations. Results show that there are large thermohaline variations north of the Subantarctic Front (SAF) at 300–1500 dbar level, indicating upwelling and downwelling of the Antarctic Intermediate Water (AAIW) along isopycnal surfaces. Based on the latest altimeter product, Absolute Dynamic Topography, a mechanism due to frontal wave propagation is proposed to explain this phenomenon, and an index for frontal waves is defined. When the frontal wave is in positive (negative) phase, the SAF flows northeastward (southeastward) with the fresh AAIW downwelling (upwelling). Such mesoscale processes greatly enhance cross-frontal exchanges of water masses. Spectral analysis shows that frontal waves in the Southern Ocean south of Australia are dominated by a period of about 130 days with a phase speed of 4 cm/s and a wavelength of 450 km.