您的位置: 专家智库 > >

国家自然科学基金(61102106)

作品数:16 被引量:67H指数:5
相关作者:刁鸣高洪元安春莲赵振宇万文龙更多>>
相关机构:哈尔滨工程大学哈尔滨师范大学西南电子设备研究所更多>>
发文基金:国家自然科学基金中国博士后科学基金中央高校基本科研业务费专项资金更多>>
相关领域:电子电信自动化与计算机技术理学电气工程更多>>

文献类型

  • 16篇期刊文章
  • 1篇会议论文

领域

  • 11篇电子电信
  • 7篇自动化与计算...
  • 4篇理学
  • 1篇电气工程

主题

  • 5篇信号
  • 4篇QUANTU...
  • 4篇COGNIT...
  • 4篇测向
  • 3篇压缩感知
  • 3篇频谱
  • 3篇感知
  • 2篇噪声
  • 2篇认知无线
  • 2篇认知无线电
  • 2篇四阶累积量
  • 2篇频谱分配
  • 2篇群算法
  • 2篇无线
  • 2篇无线电
  • 2篇相干信号
  • 2篇量子
  • 2篇二维DOA估...
  • 2篇非圆信号
  • 2篇MUSIC算...

机构

  • 11篇哈尔滨工程大...
  • 2篇哈尔滨师范大...
  • 1篇西南电子设备...
  • 1篇中国船舶重工...

作者

  • 7篇高洪元
  • 7篇刁鸣
  • 5篇安春莲
  • 2篇赵振宇
  • 1篇万文龙
  • 1篇张志强
  • 1篇刘丹丹
  • 1篇高璐
  • 1篇何昭然

传媒

  • 3篇计算机工程
  • 2篇哈尔滨工程大...
  • 2篇Journa...
  • 2篇Journa...
  • 1篇哈尔滨理工大...
  • 1篇物理学报
  • 1篇计算机工程与...
  • 1篇解放军理工大...
  • 1篇西安电子科技...
  • 1篇北京邮电大学...
  • 1篇Journa...

年份

  • 2篇2016
  • 4篇2015
  • 3篇2014
  • 5篇2013
  • 3篇2012
16 条 记 录,以下是 1-10
排序方式:
冲击噪声背景下的DOA估计新方法被引量:5
2013年
现有冲击噪声背景下的波达方向(DOA)估计方法都是基于分数低阶统计量提出的,其求解比传统的二阶矩方法复杂.为此,根据冲击噪声的幅值特性,通过对阵列接收数据进行去冲击预处理,提出了一种冲击噪声背景下的DOA估计新方法.该方法首先估计出阵列接收数据中信号成分的幅值上限,然后对阵列接收数据进行去冲击处理,从而利用传统的二阶矩方法来实现DOA估计.理论分析和仿真实验结果表明,所提方法无需求解分数低阶统计量,计算简便,估计精度高,且在强冲击噪声环境下仍然具有良好的估计性能.
刁鸣安春莲
关键词:冲击噪声多重信号分类算法二阶矩分数低阶统计量
Membrane-inspired quantum shuffled frog leaping algorithm for spectrum allocation被引量:2
2012年
To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm,which is an effective discrete optimization algorithm.Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems.By hybridizing the quantum frog colony optimization and membrane computing,the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure.The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time.Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing.
Hongyuan GaoJinlong Cao
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation被引量:4
2013年
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
GAO Hong-yuanCAO Jin-long
文化鱼群算法的广义MUSIC测向技术被引量:3
2014年
针对现有的测向算法测相干信号源会损失天线阵列孔径的问题,在引入广义导向矢量和广义导向矩阵的基础上,建立了一种通用的阵列数据模型,提出了一种基于四阶累积量的广义MUSIC测向算法。为求解所提的广义MUSIC测向算法,在文化算法中使用人工鱼群进化机制,引入了一种多维搜索的文化鱼群算法。仿真结果证明了所设计的测向算法在不损失四阶累积量所扩展阵列孔径的情形下,可有效测相干信源与独立信源的方向,与现有一些经典算法相比,所提算法有较大的优势和较广的应用范围。
何昭然高洪元
关键词:人工鱼群算法MUSIC算法文化算法四阶累积量
非圆信号的二维相干测向新方法
2013年
传统的二维相干测向算法都是针对圆信号提出的,且要求大快拍数和较多阵元数,在低信噪比时估计性能较差.通过充分利用非圆信号的特点和L型阵列的结构优势,提出了一种非圆信号的二维解相干新方法.该方法利用阵列接收信号数据及其共轭信号数据,重新构造阵列接收数据矩阵,有效地扩展了阵列孔径;同时,提出了一种修正的空间平滑技术进行解相干,最后采用ESPRIT算法实现相干信号的二维DOA估计.所提方法具有阵列利用率高的优点,能够有效弥补传统二维测向算法阵列利用率低的缺点,提高了ESPRIT算法在低信噪比时的估计性能.实验仿真结果表明,所提方法能够有效实现二维相干信号估计并且估计性能优良.
赵大勇赵振宇安春莲
关键词:非圆信号相干源二维DOA估计ESPRIT算法
Membrane-inspired quantum bee colony optimization and its applications for decision engine被引量:3
2014年
In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.
高洪元李晨琬
基于新量子蜂群算法的鲁棒多用户检测被引量:4
2016年
为求解冲击噪声环境下鲁棒多用户检测的最优解,基于人工蜂群理论和量子计算,提出一种新的量子蜂群优化算法。该算法使用2种量子觅食行为完成整个量子蜂群的协同合作,快速找到最优的蜜源位置。在冲击噪声环境下,基于简单量子蜂群算法设计量子蜂群鲁棒多用户检测器,并与基于遗传算法、量子遗传算法和粒子群算法的多用户检测器进行比较。仿真结果表明,该算法能够较好地找到最优解,且误码率较低。
高洪元梁炎松刘丹丹
关键词:码分多址多用户检测冲击噪声
非圆信号的四阶累积量测向新方法被引量:6
2012年
针对传统基于四阶累积量的非圆信号测向方法存在阵列扩展不充分或者有数据冗余等问题,利用四阶累积量的阵列扩展特性,提出了一种阵列充分扩展且无数据冗余的非圆信号测向新方法.根据信号的非圆特性,新方法充分利用了阵列接收数据及其共轭数据来构造四阶累积量矩阵,实现了阵列的充分扩展并且使扩展后的等效阵元数进一步增加;此外,通过巧妙地利用四阶累积量矩阵的结构特征,降低了算法的计算量.理论分析和实验仿真结果表明,所提方法具有计算量小、阵列扩展能力强以及分辨率高等优良性能.
刁鸣安春莲万文龙
关键词:非圆信号DOA估计四阶累积量MUSIC算法
狼群优化的神经网络频谱感知算法被引量:8
2016年
提出了一种基于狼群优化的人工神经网络频谱感知方法,实现了具有神经网络最优结构的神经网络频谱感知算法。该算法在包含自组织神经网络的频谱感知算法的基础上,具体阐述了训练样本的生成,神经网络的训练以及对神经网络训练阶段结束后所得到的权值矩阵运用狼群优化方法进行进一步的优化处理的过程。实验结果表明,狼群优化的自组织神经网络频谱感知算法与自组织神经网络的频谱感知算法相比,具有更好的频谱感知性能。
刁鸣钱荣鑫高洪元
关键词:神经网络频谱感知协作式
Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor被引量:3
2012年
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
Ming DiaoChunlian An
共2页<12>
聚类工具0