Previous studies showed that water chemistry and concentrations of dissolved organic matter (DOM) could affect its molecular conformation and binding characteristics with hydrophobic organic contaminants (HOCs). However, the conformational change of DOM resultant from water chemistry and concentrations of DOM was not extensively investigated; therefore, the contradictory reports regarding the binding property with HOCs were available in literature. In this study, the effects of ionic strength, pH and DOM concentrations on the fluorescence properties of two humic acids (HA), namely Fluka HA and Amherst HA, were investigated by three-dimensional excitation-emission matrix fluorescence spectroscopy (3DEEM) and steady-state fluorescence polarization (FP) techniques. The results not only corroborated previous observations obtained by other investigators, but revealed some new information about the fluorescence properties and molecular conformation of the humic acids under different water chemistry and DOM concentration conditions, which could shed light on its binding mechanisms and binding properties with HOCs.
Frontal affinity chromatography was applied to characterizing the mechanism of binding of silver with sediment particulates collected from Lake Ontario, Canada. The results showed that there was one major binding site for Ag+ in the particulates. The binding capacity ranges from 6.06 to 1.01 μ·mol·g-1, and the binding constant (lgK) from 6.23 to 7.43 M-1 in 0.005 M ion strength at pH=3-7. The binding capacity and affinity constant were found to be pH-dependent. It is suggested that the particulate surface site where silver was bound was the anionic base. This study would be helpful for better understanding of the fundamental environmental chemistry of silver in sediments.
The composition and vertical profiles of low molecular-weight organic acids (LMWOAs) and the contribution of them to dissolved organic matter (DOM) in sediment porewaters in Bosten Lake, Xinjiang, China were investigated. The results showed that total concentration of LMWOAs was up to 94.5 μmol/L and their proportion in DOM was 5.6%, suggesting that LMWOAs were important chemical components in DOM in lake sediment porewaters. Among the seven LMWOAs, pyruvic and acetic acid had the highest concentrations with 26.30 and 8.31 μmol/L, accounting for 51.4% and 14.92% of LMWOAs, respectively. Trifluoroacetic and sorbic acid had the lowest concentrations, indicating that the compositions of LMWOAs in relative reducing environments were largely different from those reported in glacier, atmosphere and soils. The concentrations of lactic, acetic, formic, sorbic and oxalic acid decreased with increasing depth, probably relating to stronger microbial activities in the initial stage of early diagenesis. Trifluoroacetic acid was mainly anthropogenic with its concentration, showing a diusive trend from the surface to bottom sediments. The concentrations of lactic acid and nitrate generally showed a consistent profile. The increasing concentration of pyruvic acid in the vertical profile was just opposite to that of sulfate, revealing a significant negative relationship between them. Oxalic acid remained constant except for an obvious peak at 6 cm depth. The results indicated the diversities in sources and behaviors for various LMWOAs during early diagenesis in sediments.
Min XiaoFengchang WuHaiqing LiaoWen LiXinqing LeeRongsheng Huang
Strong interaction between natural dissolved organic matter (DOM) and Hg(Ⅱ) may influence the trans- port, conversion, toxicity and bio-validity of mercury in the environment. In this paper ultraviolet (UV) absorbance titration was employed for the first time for the determination of the conditional stability constants of Hg(Ⅱ) and (DOM). With increasing Hg(Ⅱ) concentrations, the UV absorbance of fulvic acid, humic acid, and DOM in river increases progressively. By linear and non-linear model fitting, the conditional stability constants (lgK) of Hg(Ⅱ) and DOM were worked out to be 3.54?4.93 and 3.64?4.85, respectively. The results are consistent with those acquired by the typical fluorescence quenching titration method, with the maximum relative error of lgK being 2.6% and the average relative error being 0.2%. The UV absorbance titration method has the advantages of rapid determination, simple performance, and it will probably become a new approach to studying interactions between DOM and trace metallic ions.
BAI YingchenWU FengchangWAN GuojingLIU CongqiangFU PingqingLI Wen
This paper focuses on the flocculability of simulated wastewater containing heavy metal ions (Fe3+, Cd2+) or phosphorus by zeolite, microbial flocculants (MBF) produced by Aspergillus niger and the composite flocculant composed of zeolite and MBF. The main results are presented as follows: zeolite was a good flocculant when the contamination of the three simulated wastewaters was low, but the treated water is of turbidness and the particles in it are hard to precipitate. The MBF have a good flocculability toward Fe3+ wastewater, as well as particulate matter. Significant changes in flocculability occurred after adding the composite flocculant in different simulated wastewa-ters, the best or least effect respective for Fe3+ and Cd2+ wastewater. The research we have done shows that the method by which the composite flocculant is used to treat the wastewater containing heavy metal ions or phosphorus provides important reference value for practical application.
CAO WenchuanHAO JianchaoLIAN BinLIU CongqiangWU Fengchang
Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater from a heavy antimony polluted area, and the mechanism of removing Sb was also investigated. The study focused on the effect of operation parameters such as current density, initial pH and standing time on the Sb removal efficiency. Antimony concentration of below 1 mg/L in the treated wastewater was achieved, which meets the emission standards established by State Department of Environmental Protection and State Administration of China for Quality Supervision and Inspection and Quarantine of China.