This paper reports that the synchronous integer multiple oscillations of heart-cell networks or clusters are observed in the biology experiment. The behaviour of the integer multiple rhythm is a transition between super- and sub- threshold oscillations, the stochastic mechanism of the transition is identified. The similar synchronized oscillations are theoretically reproduced in the stochastic network composed of heterogeneous cells whose behaviours are chosen as excitable or oscillatory states near a Hopf bifurcation point. The parameter regions of coupling strength and noise density that the complex oscillatory rhythms can be simulated are identified. The results show that the rhythm results from a simple stochastic alternating process between super- and sub-threshold oscillations. Studies on single heart cells forming these clusters reveal excitable or oscillatory state nearby a Hopf bifurcation point underpinning the stochastic alternation. In discussion, the results are related to some abnormal heartbeat rhythms such as the sinus arrest.