An 18-year long(1993–2011) comprehensive dataset of snow and meteorological variables from Col de Porte, France is used to analyze the variation of shortwave broadband albedo with elapsed time after snowfalls(snow aging) during each snow season. The effects of air temperature, snow surface temperature and snow depth on snow albedo are investigated. An index based on the accumulation of air temperature over several consecutive days with daily mean higher than 2.5 °C is proposed to divide each snow-covered period into a dry and the following wet snow season when this index reaches 18 °C.The results indicate that snow surface albedo decreases exponentially with time in both dry and wet snow seasons.Snow albedo reduction with snow aging is small at low surface temperature and the reduction rate increases with the rise of surface temperature. However, the reduction rate is widely scattered within the observed range of temperature, implying a loose relationship between snow albedo and snow surface temperature. Snow albedo in wet snowseason is generally smaller and decreases faster than in dry snow season. For Col de Porte site, snow depths to effectively mask the underlying surface are 21 and 33 cm in dry and wet snow season respectively.
Using observational data spanning the period from February to December 2009 and recorded at the Suli station in Qinghai Province,the land-surface model CLM3.0 was employed to simulate the freezing and melting of soil.The results indicate that the simulated soil temperature is higher than the observed soil temperature and the ultimate thawing date is earlier than the observed date during the melting period.During the freezing period,the simulated soil temperature is lower than the observed soil temperature and the ultimate freezing of the deep soil is earlier than that observed.Overall,the simulation of freezing is better than that of melting,and the simulation of a shallow layer is better than that of a deeper layer.In the original CLM3.0,it is assumed that frozen soil begins to melt when the soil temperature exceeds 0C,which is inconsistent with observations.The critical freeze-thaw temperature was calculated according to thermodynamics equations and the freeze-thaw condition was modified.In this work,the melting rate for frozen soil was reduced using the modified scheme,and the simulated soil temperature was lowered. Meanwhile,the refreezing of soil during the melting season was well simulated and more closely matched observations.Additionally,it was found that the rates of melting and freezing differ,with the former being slower than the latter,but refreezing during the melting season is rather quick.
XIA Kun 1,2,3,LUO Yong 2,4,5 & LI WeiPing 2 1 Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China